A statistical evaluation of Sparsity-based Distance Measure (SDM) as an image quality assessment algorithm

K. Priya, K. Manasa, Sumohana S. Channappayya
{"title":"A statistical evaluation of Sparsity-based Distance Measure (SDM) as an image quality assessment algorithm","authors":"K. Priya, K. Manasa, Sumohana S. Channappayya","doi":"10.1109/ICASSP.2014.6854108","DOIUrl":null,"url":null,"abstract":"Sparsity-based Distance Measure (SDM), a sparse reconstruction-based image similarity measure was recently proposed and shown to have promising applications in image classification, clustering and retrieval. In this paper, we present a statistical evaluation of SDM's performance as an image quality assessment (IQA) algorithm. This evaluation is carried out on the LIVE image database. We show that the SDM performs fairly in comparison with the state-of-the-art while possessing several attractive properties. Specifically, we demonstrate its robustness to rotation (90°, 180°), scaling, and combinations of distortions - properties that are highly desirable of any IQA algorithm.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"54 1","pages":"2789-2792"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Sparsity-based Distance Measure (SDM), a sparse reconstruction-based image similarity measure was recently proposed and shown to have promising applications in image classification, clustering and retrieval. In this paper, we present a statistical evaluation of SDM's performance as an image quality assessment (IQA) algorithm. This evaluation is carried out on the LIVE image database. We show that the SDM performs fairly in comparison with the state-of-the-art while possessing several attractive properties. Specifically, we demonstrate its robustness to rotation (90°, 180°), scaling, and combinations of distortions - properties that are highly desirable of any IQA algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏性的距离度量(SDM)作为图像质量评估算法的统计评价
基于稀疏性的距离度量(SDM)是近年来提出的一种基于稀疏重建的图像相似性度量方法,在图像分类、聚类和检索等方面具有广阔的应用前景。在本文中,我们提出了SDM作为图像质量评估(IQA)算法的性能的统计评估。该评估是在LIVE图像数据库上进行的。我们表明,与最先进的技术相比,SDM的性能相当,同时拥有几个有吸引力的特性。具体来说,我们证明了它对旋转(90°,180°),缩放和扭曲组合的鲁棒性-任何IQA算法都非常需要的属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multichannel detection of an unknown rank-one signal with uncalibrated receivers Design and implementation of a low power spike detection processor for 128-channel spike sorting microsystem On the convergence of average consensus with generalized metropolis-hasting weights A network of HF surface wave radars for maritime surveillance: Preliminary results in the German Bight Mobile real-time arousal detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1