D. A. Mitkovskiy, A. A. Lazutin, A. S. Ushakova, A. L. Talis, V. V. Vasilevskaya
{"title":"Geometric Features of Structuring of Amphiphilic Macromolecules on the Surface of a Spherical Nanoparticle","authors":"D. A. Mitkovskiy, A. A. Lazutin, A. S. Ushakova, A. L. Talis, V. V. Vasilevskaya","doi":"10.1134/S1811238223700297","DOIUrl":null,"url":null,"abstract":"<p>The self-assembly of amphiphilic homopolymers tightly grafted to the spherical nanoparticle and immersed in a selective solvent is studied by the computer experiment method. Conditions under which macromolecules form thin membrane-like layers surrounding the nanoparticle are determined. It is first shown that the emerging polymer structures may be approximated by complete embedded minimal surfaces satisfying the Weierstrass representation, namely, helicoid, catenoid, and Enneper and Costa surfaces. Mathematical constructions defining these minimal surfaces highlight a new type of ordering of polymer structures and determine its symmetry classification similar to crystal classification by Fedorov groups. Calculations for the two considered sets of parameters show that structures approximated by a helicoid are energetically more favorable than structures approximated by other minimal surfaces.</p>","PeriodicalId":740,"journal":{"name":"Polymer Science, Series C","volume":"65 1","pages":"3 - 10"},"PeriodicalIF":1.6000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series C","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S1811238223700297","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The self-assembly of amphiphilic homopolymers tightly grafted to the spherical nanoparticle and immersed in a selective solvent is studied by the computer experiment method. Conditions under which macromolecules form thin membrane-like layers surrounding the nanoparticle are determined. It is first shown that the emerging polymer structures may be approximated by complete embedded minimal surfaces satisfying the Weierstrass representation, namely, helicoid, catenoid, and Enneper and Costa surfaces. Mathematical constructions defining these minimal surfaces highlight a new type of ordering of polymer structures and determine its symmetry classification similar to crystal classification by Fedorov groups. Calculations for the two considered sets of parameters show that structures approximated by a helicoid are energetically more favorable than structures approximated by other minimal surfaces.
期刊介绍:
Polymer Science, Series C (Selected Topics) is a journal published in collaboration with the Russian Academy of Sciences. Series C (Selected Topics) includes experimental and theoretical papers and reviews on the selected actual topics of macromolecular science chosen by the editorial board (1 issue a year). Submission is possible by invitation only. All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed