Miniaturized Traveling-Wave Thermoacoustic Refrigerator Driven by Loudspeaker: Numerical Design

Oday S. Mahmood, A. Karim, S. G. Yahya, Itimad D. J. Azzawi
{"title":"Miniaturized Traveling-Wave Thermoacoustic Refrigerator Driven by Loudspeaker: Numerical Design","authors":"Oday S. Mahmood, A. Karim, S. G. Yahya, Itimad D. J. Azzawi","doi":"10.1142/s2010132520500352","DOIUrl":null,"url":null,"abstract":"Ordinary refrigeration systems such as vapor-compression refrigerators are the commonly used devices in industry, mostly for their high efficiencies. However, they make a significant contribution to the depletion of Ozone and global warming due to their operational refrigerants. Hence, thermoacoustic refrigeration can be a great alternative candidate which uses inert gases such as air, helium and nitrogen as the primary refrigerant. Thermoacoustic refrigerators convert the acoustic power (sound waves) into a thermal effect (cooling power). Thermoacoustics can be counted as a new technology that has a strong potential toward the development of the thermal applications. This study aims to design and fabricate miniaturized traveling wave thermoacoustic refrigerator which can be driven by an ordinary loudspeaker. The optimized numerical design of the refrigerator shows an overall efficiency (cooling power over input electricity) of nearly 66% at a temperature difference of 25[Formula: see text]K (between cold and ambient heat exchangers). The maximum estimated cooling power is 65[Formula: see text]W at coefficient of performance (COP) of 2.65.","PeriodicalId":13757,"journal":{"name":"International Journal of Air-conditioning and Refrigeration","volume":"1 1","pages":"2050035"},"PeriodicalIF":0.8000,"publicationDate":"2020-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Air-conditioning and Refrigeration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2010132520500352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 1

Abstract

Ordinary refrigeration systems such as vapor-compression refrigerators are the commonly used devices in industry, mostly for their high efficiencies. However, they make a significant contribution to the depletion of Ozone and global warming due to their operational refrigerants. Hence, thermoacoustic refrigeration can be a great alternative candidate which uses inert gases such as air, helium and nitrogen as the primary refrigerant. Thermoacoustic refrigerators convert the acoustic power (sound waves) into a thermal effect (cooling power). Thermoacoustics can be counted as a new technology that has a strong potential toward the development of the thermal applications. This study aims to design and fabricate miniaturized traveling wave thermoacoustic refrigerator which can be driven by an ordinary loudspeaker. The optimized numerical design of the refrigerator shows an overall efficiency (cooling power over input electricity) of nearly 66% at a temperature difference of 25[Formula: see text]K (between cold and ambient heat exchangers). The maximum estimated cooling power is 65[Formula: see text]W at coefficient of performance (COP) of 2.65.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扬声器驱动的小型化行波热声制冷机:数值设计
普通的制冷系统,如蒸汽压缩冰箱,是工业上常用的设备,主要是因为它们的高效率。然而,由于它们的操作制冷剂,它们对臭氧的消耗和全球变暖做出了重大贡献。因此,热声制冷可以是一个很好的备选,它使用惰性气体,如空气,氦和氮作为主要制冷剂。热声制冷机将声功率(声波)转化为热效应(冷却功率)。热声学技术是一门在热应用领域具有巨大发展潜力的新技术。本研究旨在设计并制造一种可由普通扬声器驱动的小型化行波热声制冷机。制冷机的优化数值设计表明,在冷热交换器和环境热交换器之间的温差为25 K时,制冷机的总效率(冷却功率除以输入功率)接近66%。在性能系数(COP)为2.65时,最大估计冷却功率为65[公式:见文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
10.00%
发文量
0
期刊介绍: As the only international journal in the field of air-conditioning and refrigeration in Asia, IJACR reports researches on the equipments for controlling indoor environment and cooling/refrigeration. It includes broad range of applications and underlying theories including fluid dynamics, thermodynamics, heat transfer, and nano/bio-related technologies. In addition, it covers future energy technologies, such as fuel cell, wind turbine, solar cell/heat, geothermal energy and etc.
期刊最新文献
A review on thermochemical seasonal solar energy storage materials and modeling methods Parametric analysis of chiller plant energy consumption in a tropical climate Experimental investigation of ice slurry viscosity Performance enhancement and environmental analysis of vapor compression refrigeration system with dedicated mechanical subcooling Energy analysis of the integration of HRV and direct evaporative cooling for energy efficiency in buildings: a case study in Iraq
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1