{"title":"A Study on the Encapsulation of Cosmetic Emulsion Using Microfluidics","authors":"Nam-Gyun Jeong, Hong Jin","doi":"10.5762/KAIS.2021.22.1.81","DOIUrl":null,"url":null,"abstract":"The cosmetic industry is technology-intensive in the field of fine chemistry and continues to grow globally. The functional aspects have been mainly emphasized in the past to increase the market share in these cosmetics industries. Recently, however, efforts have been made to attract the attention of consumers to the visual effects as well as the excellent performance of cosmetics at home and abroad. Accordingly, cosmetic manufacturers are trying various technologies that encapsulate the cosmetic emulsion and modify the shape, color, and texture of the emulsion capsule. The basic and easiest method of encapsulating emulsion is dropping the emulsion through the nozzle from emulsion storage. On the other hand, the existing method of encapsulating emulsion has a limit in reducing the size of the capsule. In this study, the limit was shown by theory and numerical analysis method, and the emulsion encapsulation phenomena occurring in the micro-channel were studied to apply microfluidics","PeriodicalId":23087,"journal":{"name":"The Korea Academia-Industrial cooperation Society","volume":"116 1","pages":"81-86"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Korea Academia-Industrial cooperation Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5762/KAIS.2021.22.1.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The cosmetic industry is technology-intensive in the field of fine chemistry and continues to grow globally. The functional aspects have been mainly emphasized in the past to increase the market share in these cosmetics industries. Recently, however, efforts have been made to attract the attention of consumers to the visual effects as well as the excellent performance of cosmetics at home and abroad. Accordingly, cosmetic manufacturers are trying various technologies that encapsulate the cosmetic emulsion and modify the shape, color, and texture of the emulsion capsule. The basic and easiest method of encapsulating emulsion is dropping the emulsion through the nozzle from emulsion storage. On the other hand, the existing method of encapsulating emulsion has a limit in reducing the size of the capsule. In this study, the limit was shown by theory and numerical analysis method, and the emulsion encapsulation phenomena occurring in the micro-channel were studied to apply microfluidics