New Adaptive Sliding Mode for Unperturbed Forearm and Wrist Rehabilitation Robot

B. Brahmi, Ibrahim El Bojairami, T. Ahmed, M. Rahman, Asif Al Zubayer Swapnil, Javier Dario Sanjuan De Caro
{"title":"New Adaptive Sliding Mode for Unperturbed Forearm and Wrist Rehabilitation Robot","authors":"B. Brahmi, Ibrahim El Bojairami, T. Ahmed, M. Rahman, Asif Al Zubayer Swapnil, Javier Dario Sanjuan De Caro","doi":"10.1109/SSD52085.2021.9429302","DOIUrl":null,"url":null,"abstract":"The paper put forth presents the design and validation of a novel adaptive, variable gain, sliding mode control (SMC) reaching law, for the purpose of controlling unperturbed nonlinear systems. The novelty of this law stems from its capability to overcome the main limitations involved with conventional SMCs. In contrast to existing reaching laws, the presented law is potentially able to achieve high system performance, reduce the chattering problem significantly, and ensure fast convergence of system trajectories to equilibrium. The designed law integrates the features of both, the exponential reaching law (ERL) and the power rate reaching law (PRL), meanwhile, it overcomes their limitations. Simulation and comparison case studies against ERL and PRL are also carried out with Forearm and Wrist Rehabilitation Robot to validate the effectiveness and advantages of the proposed reaching law scheme (Proposed RL).","PeriodicalId":6799,"journal":{"name":"2021 18th International Multi-Conference on Systems, Signals & Devices (SSD)","volume":"15 1","pages":"1160-1165"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th International Multi-Conference on Systems, Signals & Devices (SSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD52085.2021.9429302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The paper put forth presents the design and validation of a novel adaptive, variable gain, sliding mode control (SMC) reaching law, for the purpose of controlling unperturbed nonlinear systems. The novelty of this law stems from its capability to overcome the main limitations involved with conventional SMCs. In contrast to existing reaching laws, the presented law is potentially able to achieve high system performance, reduce the chattering problem significantly, and ensure fast convergence of system trajectories to equilibrium. The designed law integrates the features of both, the exponential reaching law (ERL) and the power rate reaching law (PRL), meanwhile, it overcomes their limitations. Simulation and comparison case studies against ERL and PRL are also carried out with Forearm and Wrist Rehabilitation Robot to validate the effectiveness and advantages of the proposed reaching law scheme (Proposed RL).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种无摄动前臂和手腕康复机器人的自适应滑模
本文提出了一种新的自适应变增益滑模控制(SMC)趋近律的设计和验证,用于控制无摄动非线性系统。这一法律的新颖之处在于它能够克服传统中型管理公司所涉及的主要限制。与现有的趋近律相比,所提出的趋近律有可能实现较高的系统性能,显著减少抖振问题,并确保系统轨迹快速收敛到平衡状态。该律综合了指数趋近律(ERL)和功率趋近律(PRL)的特点,克服了它们的局限性。以前臂和手腕康复机器人为例,对ERL和PRL进行了仿真和对比研究,以验证所提出的到达律方案(proposed RL)的有效性和优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quality of service optimization in OFDM-based cognitive radio network A Fast CFAR Algorithm based on a Novel Region Proposal Approach for Ship Detection in SARlmages Current Challenges of Facial Recognition using Deep Learning Placement of DFIG power plants for Improving Static Voltage Stability Adaptive Finite-Time Robust Sliding Mode Controller For Upper Limb Exoskeleton Robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1