Supervised Learning with Small Training Set for Gesture Recognition by Spiking Neural Networks

Natabara Máté Gyöngyössy, Márk Domonkos, J. Botzheim, P. Korondi
{"title":"Supervised Learning with Small Training Set for Gesture Recognition by Spiking Neural Networks","authors":"Natabara Máté Gyöngyössy, Márk Domonkos, J. Botzheim, P. Korondi","doi":"10.1109/SSCI44817.2019.9002720","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel supervised learning algorithm for spiking neural networks. The algorithm combines Hebbian learning and least mean squares method and it works well for small training datasets and short training cycles. The proposed method is applied in human-robot interaction for recognizing musical hand gestures based on the work of Zoltán Kodaly. The MNIST dataset is also used as a benchmark test to´ verify the proposed algorithm’s capability to outperform shallow ANN architectures. Experiments with the robot also provided promising results by recognizing the human hand signs correctly.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"49 1","pages":"2201-2206"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9002720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper proposes a novel supervised learning algorithm for spiking neural networks. The algorithm combines Hebbian learning and least mean squares method and it works well for small training datasets and short training cycles. The proposed method is applied in human-robot interaction for recognizing musical hand gestures based on the work of Zoltán Kodaly. The MNIST dataset is also used as a benchmark test to´ verify the proposed algorithm’s capability to outperform shallow ANN architectures. Experiments with the robot also provided promising results by recognizing the human hand signs correctly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脉冲神经网络的小训练集监督学习手势识别
提出了一种新的脉冲神经网络监督学习算法。该算法将Hebbian学习和最小均二乘法相结合,在训练数据集小、训练周期短的情况下均能取得较好的效果。基于Zoltán Kodaly的工作,将该方法应用于人机交互中音乐手势的识别。MNIST数据集也被用作基准测试,以验证所提出的算法优于浅层人工神经网络架构的能力。机器人的实验也提供了有希望的结果,正确识别人类的手势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planning for millions of NPCs in Real-Time Improving Diversity in Concept Drift Ensembles Self-Organizing Transformations for Automatic Feature Engineering Corrosion-like Defect Severity Estimation in Pipelines Using Convolutional Neural Networks Heuristic Hybridization for CaRSP, a multilevel decision problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1