Comparison of Malware Classification Methods using Convolutional Neural Network based on API Call Stream

Matthew Schofield, Gülsüm Alicioğlu, Bo Sun, Russell Binaco, Paul Turner, Cameron Thatcher, Alex Lam, Anthony F. Breitzman
{"title":"Comparison of Malware Classification Methods using Convolutional Neural Network based on API Call Stream","authors":"Matthew Schofield, Gülsüm Alicioğlu, Bo Sun, Russell Binaco, Paul Turner, Cameron Thatcher, Alex Lam, Anthony F. Breitzman","doi":"10.5121/IJNSA.2021.13201","DOIUrl":null,"url":null,"abstract":"Malicious software is constantly being developed and improved, so detection and classification of malwareis an ever-evolving problem. Since traditional malware detection techniques fail to detect new/unknown malware, machine learning algorithms have been used to overcome this disadvantage. We present a Convolutional Neural Network (CNN) for malware type classification based on the API (Application Program Interface) calls. This research uses a database of 7107 instances of API call streams and 8 different malware types:Adware, Backdoor, Downloader, Dropper, Spyware, Trojan, Virus,Worm. We used a 1-Dimensional CNN by mapping API calls as categorical and term frequency-inverse document frequency (TF-IDF) vectors and compared the results to other classification techniques.The proposed 1-D CNN outperformed other classification techniques with 91% overall accuracy for both categorical and TFIDF vectors.","PeriodicalId":93303,"journal":{"name":"International journal of network security & its applications","volume":"67 1","pages":"1-19"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of network security & its applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJNSA.2021.13201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Malicious software is constantly being developed and improved, so detection and classification of malwareis an ever-evolving problem. Since traditional malware detection techniques fail to detect new/unknown malware, machine learning algorithms have been used to overcome this disadvantage. We present a Convolutional Neural Network (CNN) for malware type classification based on the API (Application Program Interface) calls. This research uses a database of 7107 instances of API call streams and 8 different malware types:Adware, Backdoor, Downloader, Dropper, Spyware, Trojan, Virus,Worm. We used a 1-Dimensional CNN by mapping API calls as categorical and term frequency-inverse document frequency (TF-IDF) vectors and compared the results to other classification techniques.The proposed 1-D CNN outperformed other classification techniques with 91% overall accuracy for both categorical and TFIDF vectors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于API调用流的卷积神经网络恶意软件分类方法比较
恶意软件不断发展和改进,因此恶意软件的检测和分类是一个不断发展的问题。由于传统的恶意软件检测技术无法检测到新的/未知的恶意软件,机器学习算法被用来克服这一缺点。提出了一种基于API(应用程序接口)调用的卷积神经网络(CNN)进行恶意软件类型分类。本研究使用了一个包含7107个API调用流实例的数据库和8种不同的恶意软件类型:广告软件、后门软件、下载软件、丢弃软件、间谍软件、特洛伊木马、病毒、蠕虫。我们通过将API调用映射为分类和词频率逆文档频率(TF-IDF)向量来使用一维CNN,并将结果与其他分类技术进行比较。本文提出的1-D CNN在分类向量和TFIDF向量上的总体准确率均达到91%,优于其他分类技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Invertible Neural Network for Inference Pipeline Anomaly Detection SPDZ-Based Optimistic Fair Multi-Party Computation Detection Exploring the Effectiveness of VPN Architecture in Enhancing Network Security for Mobile Networks: An Investigation Study A NOVEL ALERT CORRELATION TECHNIQUE FOR FILTERING NETWORK ATTACKS Offline Signature Recognition via Convolutional Neural Network and Multiple Classifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1