Hao Yang, S. Lian, P. Chapon, Y. Song, J. Wang, Congkang Xu
{"title":"Quantification of High Resolution Pulsed RF GDOES Depth Profiles for Mo/B4C/Si Nano-Multilayers","authors":"Hao Yang, S. Lian, P. Chapon, Y. Song, J. Wang, Congkang Xu","doi":"10.3390/COATINGS11060612","DOIUrl":null,"url":null,"abstract":"Pulsed-radio frequency glow discharge optical emission spectrometry (Pulsed-RF-GDOES) has exhibited great potential for high resolution (HR) depth profiling. In this paper, the measured GDOES depth profile of 60 × Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) was quantified by employing the newly extended Mixing-Roughness-Information depth (MRI) model. We evaluated the influences of the thickness and sputtering rate on the depth profile of very thin layers. We demonstrated that a method using the full width at half maximum (FWHM) value of the measured time-concentration profile for determining the sputtering rate and the corresponding thickness was not reliable if preferential sputtering took place upon depth profiling.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":"67 1","pages":"612"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE Coatings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/COATINGS11060612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Pulsed-radio frequency glow discharge optical emission spectrometry (Pulsed-RF-GDOES) has exhibited great potential for high resolution (HR) depth profiling. In this paper, the measured GDOES depth profile of 60 × Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) was quantified by employing the newly extended Mixing-Roughness-Information depth (MRI) model. We evaluated the influences of the thickness and sputtering rate on the depth profile of very thin layers. We demonstrated that a method using the full width at half maximum (FWHM) value of the measured time-concentration profile for determining the sputtering rate and the corresponding thickness was not reliable if preferential sputtering took place upon depth profiling.