Selection of features into the object's own space based on the measure of its compactness

Pub Date : 2019-12-01 DOI:10.17223/19988605/49/7
N. Ignatyev, A. Mirzaev
{"title":"Selection of features into the object's own space based on the measure of its compactness","authors":"N. Ignatyev, A. Mirzaev","doi":"10.17223/19988605/49/7","DOIUrl":null,"url":null,"abstract":" Z ( S d , ρ) ≠  . The compactness of the object S d ∊ K t on the set X ( d i t i d t X k S K O S Z S K         The object S i ∊ K i ,ρ)|/| K 3- t |,       3 , m i n , r t i j t j i j r S K g S K S S S S     3 -t ∩ Γ ( p ) is the nearest one. The set X ( u )  X ( n ), computed on E 0 \\{ S i } as             m a x d d X k X n X u X k     is considered informative for the object S d ∊ K t , and the value of θ d ( X ( u )) is considered as a measure of its compactness. To implement the algorithm of step by step selection of features into an informative set, data preprocessing is performed. The purpose of preprocessing is to select the first pair ( x i , x j ) into an informative set based on the proposed criterion. The criterion is used to search for a cluster of data with a maximum density of descriptions of objects of one with S d class","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/19988605/49/7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

 Z ( S d , ρ) ≠  . The compactness of the object S d ∊ K t on the set X ( d i t i d t X k S K O S Z S K         The object S i ∊ K i ,ρ)|/| K 3- t |,       3 , m i n , r t i j t j i j r S K g S K S S S S     3 -t ∩ Γ ( p ) is the nearest one. The set X ( u )  X ( n ), computed on E 0 \{ S i } as             m a x d d X k X n X u X k     is considered informative for the object S d ∊ K t , and the value of θ d ( X ( u )) is considered as a measure of its compactness. To implement the algorithm of step by step selection of features into an informative set, data preprocessing is performed. The purpose of preprocessing is to select the first pair ( x i , x j ) into an informative set based on the proposed criterion. The criterion is used to search for a cluster of data with a maximum density of descriptions of objects of one with S d class
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
根据物体的紧度度量,选择特征到物体自身的空间中
Z (S d, ρ)≠。对象的密实度S d∊K t在集合X (d我t d t X K K O年代Z S K对象我∊K,ρ)| | | K / 3 - t,3 m我n,我t j t j r K g S K年代年代年代3 - t∩Γ(p)最近的一个。集合X (u)X (n),在E 0 \{S i}上计算为ma X d d X k X k X n X u X k被认为是对象S d k t的信息量,θ d (X (u))的值被认为是其紧性的度量。为了实现将特征逐步选择为信息集的算法,对数据进行预处理。预处理的目的是根据提出的标准选择第一对(x i, x j)到一个信息集中。该准则用于搜索一类对象描述密度最大的数据簇,该类对象的描述密度为1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1