Novelconvolution Based Signal Processing Techniques for a Simplified Artificial Olfactory Mucosa

J. Gardner, J.E. Taylor
{"title":"Novelconvolution Based Signal Processing Techniques for a Simplified Artificial Olfactory Mucosa","authors":"J. Gardner, J.E. Taylor","doi":"10.1109/SENSOR.2007.4300672","DOIUrl":null,"url":null,"abstract":"As our understanding of the human olfactory system increases, so does our ability to design novel architectures in order to mimic the biological system. The concept of an artificial olfactory mucosa represents a new development in the field of biomimetics. Here we analyse the signals produced by such a biomimetic system that contain a spatio-temporal element not previously encountered within the field of machine olfaction or so-called electronic noses. This paper explores the use of convolution-based signal processing methodologies to exploit this richer data-set and ameliorate the well-known problems of sensor noise and drift. We show that, under certain conditions, an artificial mucosa combined with a convolution based classifier performs better than a conventional electronic nose.","PeriodicalId":23295,"journal":{"name":"TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference","volume":"1 1","pages":"2473-2476"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.2007.4300672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

As our understanding of the human olfactory system increases, so does our ability to design novel architectures in order to mimic the biological system. The concept of an artificial olfactory mucosa represents a new development in the field of biomimetics. Here we analyse the signals produced by such a biomimetic system that contain a spatio-temporal element not previously encountered within the field of machine olfaction or so-called electronic noses. This paper explores the use of convolution-based signal processing methodologies to exploit this richer data-set and ameliorate the well-known problems of sensor noise and drift. We show that, under certain conditions, an artificial mucosa combined with a convolution based classifier performs better than a conventional electronic nose.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于新卷积的简化人工嗅粘膜信号处理技术
随着我们对人类嗅觉系统了解的增加,我们设计新颖建筑以模仿生物系统的能力也在增强。人工嗅觉粘膜的概念代表了仿生学领域的一个新发展。在这里,我们分析了由这种仿生系统产生的信号,该系统包含了以前在机器嗅觉或所谓的电子鼻领域中未遇到的时空元素。本文探讨了基于卷积的信号处理方法的使用,以利用这一更丰富的数据集,并改善众所周知的传感器噪声和漂移问题。我们表明,在某些条件下,人工粘膜结合基于卷积的分类器比传统的电子鼻表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Biaxially Stretchable Interconnect with Liquid Alloy Joints on Flexible Substrate Analysis of Heavy Metal Ions in Real Samples using a Concentrator Device with a Super-Hydrophobic Surface Sliding Contact Micro-Bearing for Nano-Precision Sensing and Positioning Self-Sensing Quartz-Crystal Cantilever for Nanometric Sensing Fabrication and Characterization of a Hydrogen Sensor Based on Palladium Nanowires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1