{"title":"Generalized Plane Waves in a Rotating Thermoelastic Double Porous Solid","authors":"V. Pathania, Rajesh Kumar, V. Gupta, M. Barak","doi":"10.2478/ijame-2022-0055","DOIUrl":null,"url":null,"abstract":"Abstract The propagation of plane waves in a rotating homogeneous, isotropic, thermoelastic solid with double porosity following Lord-Shulman’s theory of thermoelasticity has been investigated. It is assumed that the medium rotates about an axis normal to the surface with a uniform angular velocity. There may exist five coupled waves that evolved due to the longitudinal, transverse disturbance, voids of type-I and type-II, and temperature change in the medium. The secular equation for the model under consideration has been derived with the help of formal solutions and boundary conditions. The amplitude of displacements, temperature change and volume fraction fields for voids of type-I and type-II have also been computed analytically. Finally, numerical computations have been carried out for magnesium crystal material to understand the behavior of amplitude of phase velocity, penetration depth, specific loss, displacement components, temperature change, and volume fraction field due to type-I and type-II voids corresponding to the different rotation rates. Various graphs have been plotted to support the analytical findings. The study may be used in the development of rotation sensors, material design and thermal efficiency.","PeriodicalId":37871,"journal":{"name":"International Journal of Applied Mechanics and Engineering","volume":"40 1","pages":"138 - 154"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ijame-2022-0055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract The propagation of plane waves in a rotating homogeneous, isotropic, thermoelastic solid with double porosity following Lord-Shulman’s theory of thermoelasticity has been investigated. It is assumed that the medium rotates about an axis normal to the surface with a uniform angular velocity. There may exist five coupled waves that evolved due to the longitudinal, transverse disturbance, voids of type-I and type-II, and temperature change in the medium. The secular equation for the model under consideration has been derived with the help of formal solutions and boundary conditions. The amplitude of displacements, temperature change and volume fraction fields for voids of type-I and type-II have also been computed analytically. Finally, numerical computations have been carried out for magnesium crystal material to understand the behavior of amplitude of phase velocity, penetration depth, specific loss, displacement components, temperature change, and volume fraction field due to type-I and type-II voids corresponding to the different rotation rates. Various graphs have been plotted to support the analytical findings. The study may be used in the development of rotation sensors, material design and thermal efficiency.
期刊介绍:
INTERNATIONAL JOURNAL OF APPLIED MECHANICS AND ENGINEERING is an archival journal which aims to publish high quality original papers. These should encompass the best fundamental and applied science with an emphasis on their application to the highest engineering practice. The scope includes all aspects of science and engineering which have relevance to: biomechanics, elasticity, plasticity, vibrations, mechanics of structures, mechatronics, plates & shells, magnetohydrodynamics, rheology, thermodynamics, tribology, fluid dynamics.