Generalized Plane Waves in a Rotating Thermoelastic Double Porous Solid

V. Pathania, Rajesh Kumar, V. Gupta, M. Barak
{"title":"Generalized Plane Waves in a Rotating Thermoelastic Double Porous Solid","authors":"V. Pathania, Rajesh Kumar, V. Gupta, M. Barak","doi":"10.2478/ijame-2022-0055","DOIUrl":null,"url":null,"abstract":"Abstract The propagation of plane waves in a rotating homogeneous, isotropic, thermoelastic solid with double porosity following Lord-Shulman’s theory of thermoelasticity has been investigated. It is assumed that the medium rotates about an axis normal to the surface with a uniform angular velocity. There may exist five coupled waves that evolved due to the longitudinal, transverse disturbance, voids of type-I and type-II, and temperature change in the medium. The secular equation for the model under consideration has been derived with the help of formal solutions and boundary conditions. The amplitude of displacements, temperature change and volume fraction fields for voids of type-I and type-II have also been computed analytically. Finally, numerical computations have been carried out for magnesium crystal material to understand the behavior of amplitude of phase velocity, penetration depth, specific loss, displacement components, temperature change, and volume fraction field due to type-I and type-II voids corresponding to the different rotation rates. Various graphs have been plotted to support the analytical findings. The study may be used in the development of rotation sensors, material design and thermal efficiency.","PeriodicalId":37871,"journal":{"name":"International Journal of Applied Mechanics and Engineering","volume":"40 1","pages":"138 - 154"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ijame-2022-0055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract The propagation of plane waves in a rotating homogeneous, isotropic, thermoelastic solid with double porosity following Lord-Shulman’s theory of thermoelasticity has been investigated. It is assumed that the medium rotates about an axis normal to the surface with a uniform angular velocity. There may exist five coupled waves that evolved due to the longitudinal, transverse disturbance, voids of type-I and type-II, and temperature change in the medium. The secular equation for the model under consideration has been derived with the help of formal solutions and boundary conditions. The amplitude of displacements, temperature change and volume fraction fields for voids of type-I and type-II have also been computed analytically. Finally, numerical computations have been carried out for magnesium crystal material to understand the behavior of amplitude of phase velocity, penetration depth, specific loss, displacement components, temperature change, and volume fraction field due to type-I and type-II voids corresponding to the different rotation rates. Various graphs have been plotted to support the analytical findings. The study may be used in the development of rotation sensors, material design and thermal efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
旋转热弹性双孔固体中的广义平面波
摘要根据Lord-Shulman热弹性理论,研究了平面波在旋转均匀、各向同性、双孔隙度热弹性固体中的传播。假设介质沿垂直于表面的轴以匀速角速度旋转。由于介质的纵向、横向扰动、i型和ii型空隙以及温度变化,可能存在五种耦合波。在形式解和边界条件的帮助下,导出了所考虑模型的长期方程。对第一类和第二类空洞的位移振幅、温度变化和体积分数场也进行了解析计算。最后,对镁晶体材料进行了数值计算,了解了不同转速下i型和ii型孔隙对相速度幅值、穿透深度、比损失、位移分量、温度变化和体积分数场的影响。已经绘制了各种图表来支持分析结果。该研究可用于旋转传感器的开发、材料设计和热效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Applied Mechanics and Engineering
International Journal of Applied Mechanics and Engineering Engineering-Civil and Structural Engineering
CiteScore
1.50
自引率
0.00%
发文量
45
审稿时长
35 weeks
期刊介绍: INTERNATIONAL JOURNAL OF APPLIED MECHANICS AND ENGINEERING is an archival journal which aims to publish high quality original papers. These should encompass the best fundamental and applied science with an emphasis on their application to the highest engineering practice. The scope includes all aspects of science and engineering which have relevance to: biomechanics, elasticity, plasticity, vibrations, mechanics of structures, mechatronics, plates & shells, magnetohydrodynamics, rheology, thermodynamics, tribology, fluid dynamics.
期刊最新文献
The detrimental effect of thermal exposure and thermophoresis on MHD flow with combined mass and heat transmission employing permeability Conjugate Mixed Convection of a Micropolar Fluid Over a Vertical Hollow Circular Cylinder chattering analysis of an electro-hydraulic backstepping velocity controller Effect of Angular Speed Variations on the Nonlinear Vibrations of a Rotational Spring-Mass System Entropy Generation Analysis OF Mhd Micropolar – Nanofluid Flow Over A Moved And Permeable Vertical Plate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1