{"title":"Effect of nano bentonite on direct yellow 50 dye removal; Adsorption isotherm, kinetic analysis, and thermodynamic behavior","authors":"A. Mahmoud","doi":"10.1177/14686783221090377","DOIUrl":null,"url":null,"abstract":"Developing countries suffering from the toxicity of different industrial effluents especially dyes. This study successfully prepared and characterized nano-bentonite for anionic dye removal (DY 50). The prepared nanoparticles were characterized by X-Ray Diffraction (XRD), X-ray Fluorescence (XRF), Scanning Electron Microscope (SEM), EDAX analysis, FT-IR, and TGA and the obtained results indicated the formation of nanoparticles with an average size of 15 nm. The effect of different operating conditions was studied using different pH, dose, contact time, temperature, and initial DY 50 concentrations. The obtained results indicated that nano bentonite was able to adsorb about 78.3 and 100% for initial concentrations of 100±8.1 and 20 ±1.62 mg/L, respectively. The optimum removal conditions were observed at acidic media (pH 3) using sorbent material dosage 1 g/L for 45 min and 30°C. The adsorption isotherm, kinetic analysis, and thermodynamic behavior were studied by using linear equation form, and the adjusted R2 was compared to detect the preferred models. The adsorption isotherm indicated that heterogeneous, as well as multilayer adsorption, plays an important role in the removal of dye. Kinetic studies indicated the chemisorption interaction between sorbed and adsorbed molecules. Thermodynamic behavior indicated the reaction is exothermic with ∆H equal to −5.24 KJ/mol and ∆S equal −74.2 J/K.mol. Finally, this study strongly recommended using nano bentonite for DY 50 removal from an aqueous solution. The RSM relations show significant relations in all removal models with p-value <0.001. The ANN results indicated that the most effective operating conditions are the effect of nano bentonite dose followed by the pH effect.","PeriodicalId":20859,"journal":{"name":"Progress in Reaction Kinetics and Mechanism","volume":"1 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Reaction Kinetics and Mechanism","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/14686783221090377","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 6
Abstract
Developing countries suffering from the toxicity of different industrial effluents especially dyes. This study successfully prepared and characterized nano-bentonite for anionic dye removal (DY 50). The prepared nanoparticles were characterized by X-Ray Diffraction (XRD), X-ray Fluorescence (XRF), Scanning Electron Microscope (SEM), EDAX analysis, FT-IR, and TGA and the obtained results indicated the formation of nanoparticles with an average size of 15 nm. The effect of different operating conditions was studied using different pH, dose, contact time, temperature, and initial DY 50 concentrations. The obtained results indicated that nano bentonite was able to adsorb about 78.3 and 100% for initial concentrations of 100±8.1 and 20 ±1.62 mg/L, respectively. The optimum removal conditions were observed at acidic media (pH 3) using sorbent material dosage 1 g/L for 45 min and 30°C. The adsorption isotherm, kinetic analysis, and thermodynamic behavior were studied by using linear equation form, and the adjusted R2 was compared to detect the preferred models. The adsorption isotherm indicated that heterogeneous, as well as multilayer adsorption, plays an important role in the removal of dye. Kinetic studies indicated the chemisorption interaction between sorbed and adsorbed molecules. Thermodynamic behavior indicated the reaction is exothermic with ∆H equal to −5.24 KJ/mol and ∆S equal −74.2 J/K.mol. Finally, this study strongly recommended using nano bentonite for DY 50 removal from an aqueous solution. The RSM relations show significant relations in all removal models with p-value <0.001. The ANN results indicated that the most effective operating conditions are the effect of nano bentonite dose followed by the pH effect.