Graphical Minimax Game and Off-Policy Reinforcement Learning for Heterogeneous MASs with Spanning Tree Condition

Wei Dong, Jianan Wang, Chunyan Wang, Zhenqiang Qi, Z. Ding
{"title":"Graphical Minimax Game and Off-Policy Reinforcement Learning for Heterogeneous MASs with Spanning Tree Condition","authors":"Wei Dong, Jianan Wang, Chunyan Wang, Zhenqiang Qi, Z. Ding","doi":"10.1142/S2737480721500114","DOIUrl":null,"url":null,"abstract":"In this paper, the optimal consensus control problem is investigated for heterogeneous linear multi-agent systems (MASs) with spanning tree condition based on game theory and reinforcement learning. First, the graphical minimax game algebraic Riccati equation (ARE) is derived by converting the consensus problem into a zero-sum game problem between each agent and its neighbors. The asymptotic stability and minimax validation of the closed-loop systems are proved theoretically. Then, a data-driven off-policy reinforcement learning algorithm is proposed to online learn the optimal control policy without the information of the system dynamics. A certain rank condition is established to guarantee the convergence of the proposed algorithm to the unique solution of the ARE. Finally, the effectiveness of the proposed method is demonstrated through a numerical simulation.","PeriodicalId":6623,"journal":{"name":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2737480721500114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, the optimal consensus control problem is investigated for heterogeneous linear multi-agent systems (MASs) with spanning tree condition based on game theory and reinforcement learning. First, the graphical minimax game algebraic Riccati equation (ARE) is derived by converting the consensus problem into a zero-sum game problem between each agent and its neighbors. The asymptotic stability and minimax validation of the closed-loop systems are proved theoretically. Then, a data-driven off-policy reinforcement learning algorithm is proposed to online learn the optimal control policy without the information of the system dynamics. A certain rank condition is established to guarantee the convergence of the proposed algorithm to the unique solution of the ARE. Finally, the effectiveness of the proposed method is demonstrated through a numerical simulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生成树条件下异构质量的图形极大极小博弈与非策略强化学习
本文基于博弈论和强化学习,研究了具有生成树条件的异构线性多智能体系统的最优共识控制问题。首先,将共识问题转化为每个智能体与其相邻智能体之间的零和博弈问题,推导出图形极小极大博弈代数Riccati方程(ARE)。从理论上证明了闭环系统的渐近稳定性和极大极小验证性。然后,提出了一种数据驱动的离策略强化学习算法,在不需要系统动力学信息的情况下在线学习最优控制策略。建立了一定的秩条件,保证了算法收敛到ARE的唯一解。最后,通过数值仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Sliding-Mode Disturbance Observer-Based Nonlinear Control for Unmanned Dual-Arm Aerial Manipulator Subject to State Constraints A Cloud Detection Method for Landsat 8 Satellite Remote Sensing Images Based on Improved CDNet Model Time-coordinated path following for multiple agile fixed-wing UAVs with end-roll expectations A Novel Model Calibration Method for Active Magnetic Bearing Based on Deep Reinforcement Learning Wind and Actuator Fault Estimation for a Quadrotor UAV Based on Two-Stage Particle Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1