{"title":"Majorization and Matrix-Monotone Functions in Wireless Communications","authors":"Eduard Axel Jorswieck, H. Boche","doi":"10.1561/0100000026","DOIUrl":null,"url":null,"abstract":"This short tutorial presents two mathematical techniques namely Majorization Theory and Matrix-Monotone Functions, reviews their basic definitions and describes their concepts clearly with many illustrative examples. In addition to this tutorial, new results are presented with respect to Schur-convex functions and regarding the properties of matrix-monotone functions. \n \nThe techniques are applied to solve communication and information theoretic problems in wireless communications. The impact of spatial correlation in multiple antenna systems is characterized for many important performance measures, e.g., average mutual information, outage probability, error performance, minimum Eb/N0 and wide-band slope, zero-outage capacity, and capacity region. The impact of user distribution in cellular systems is characterized for different scenarios including perfectly informed transmitters and receivers, regarding, e.g., the average sum rate, the outage sum rate, maximum throughput. Finally, a unified framework for the performance analysis of multiple antenna systems is developed based on matrix-monotone functions. The optimization of transmit strategies for multiple antennas is carried out by optimization of matrix-monotone functions. The results within this framework resemble and complement the various results on optimal transmit strategies in single-user and multiple-user multiple-antenna systems.","PeriodicalId":45236,"journal":{"name":"Foundations and Trends in Communications and Information Theory","volume":"1 1","pages":"553-701"},"PeriodicalIF":2.0000,"publicationDate":"2007-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"154","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Communications and Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/0100000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 154
Abstract
This short tutorial presents two mathematical techniques namely Majorization Theory and Matrix-Monotone Functions, reviews their basic definitions and describes their concepts clearly with many illustrative examples. In addition to this tutorial, new results are presented with respect to Schur-convex functions and regarding the properties of matrix-monotone functions.
The techniques are applied to solve communication and information theoretic problems in wireless communications. The impact of spatial correlation in multiple antenna systems is characterized for many important performance measures, e.g., average mutual information, outage probability, error performance, minimum Eb/N0 and wide-band slope, zero-outage capacity, and capacity region. The impact of user distribution in cellular systems is characterized for different scenarios including perfectly informed transmitters and receivers, regarding, e.g., the average sum rate, the outage sum rate, maximum throughput. Finally, a unified framework for the performance analysis of multiple antenna systems is developed based on matrix-monotone functions. The optimization of transmit strategies for multiple antennas is carried out by optimization of matrix-monotone functions. The results within this framework resemble and complement the various results on optimal transmit strategies in single-user and multiple-user multiple-antenna systems.
期刊介绍:
Foundations and Trends® in Communications and Information Theory publishes survey and tutorial articles in the following topics: - Coded modulation - Coding theory and practice - Communication complexity - Communication system design - Cryptology and data security - Data compression - Data networks - Demodulation and Equalization - Denoising - Detection and estimation - Information theory and statistics - Information theory and computer science - Joint source/channel coding - Modulation and signal design - Multiuser detection - Multiuser information theory