Kinetic modeling of butane-2,3-diol dehydration over Nb2O5.nH2O

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Progress in Reaction Kinetics and Mechanism Pub Date : 2019-04-10 DOI:10.1177/1468678319825686
Guilin Cheng, Lin-yan Wang, Chengjun Jiang
{"title":"Kinetic modeling of butane-2,3-diol dehydration over Nb2O5.nH2O","authors":"Guilin Cheng, Lin-yan Wang, Chengjun Jiang","doi":"10.1177/1468678319825686","DOIUrl":null,"url":null,"abstract":"This study employed Nb2O5.nH2O for the dehydration of butane-2,3-diol, which could be derived from biomass or waste gas using a fermentation process. The experiments were conducted at a temperature ranging from 220 °C to 260 °C and a weight hourly space velocity of 0.01–0.05 min−1. There are three main products that include methyl ethyl ketone, isobutyraldehyde, and butadiene. The yield of products increased with the reaction temperature. Rate data for the dehydration reaction were well represented by Langmuir–Hinshelwood kinetics with adsorption parameters in the rate equations, which assumed the formation of products was reversible with single-site reaction. The apparent activation energies for the dehydration reaction of methyl ethyl ketone, isobutyraldehyde, and butadiene obtained from the Arrhenius plot data were 19.5, 24.0, and 23.7 kJ mol−1, respectively. The adsorption energies for butane-2,3-diol, methyl ethyl ketone, isobutyraldehyde, and butadiene were −182.4, −142.1, −136.1, and −105.6 kJ mol−1, respectively.","PeriodicalId":20859,"journal":{"name":"Progress in Reaction Kinetics and Mechanism","volume":"1 1","pages":"18 - 28"},"PeriodicalIF":2.1000,"publicationDate":"2019-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Reaction Kinetics and Mechanism","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/1468678319825686","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

Abstract

This study employed Nb2O5.nH2O for the dehydration of butane-2,3-diol, which could be derived from biomass or waste gas using a fermentation process. The experiments were conducted at a temperature ranging from 220 °C to 260 °C and a weight hourly space velocity of 0.01–0.05 min−1. There are three main products that include methyl ethyl ketone, isobutyraldehyde, and butadiene. The yield of products increased with the reaction temperature. Rate data for the dehydration reaction were well represented by Langmuir–Hinshelwood kinetics with adsorption parameters in the rate equations, which assumed the formation of products was reversible with single-site reaction. The apparent activation energies for the dehydration reaction of methyl ethyl ketone, isobutyraldehyde, and butadiene obtained from the Arrhenius plot data were 19.5, 24.0, and 23.7 kJ mol−1, respectively. The adsorption energies for butane-2,3-diol, methyl ethyl ketone, isobutyraldehyde, and butadiene were −182.4, −142.1, −136.1, and −105.6 kJ mol−1, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
丁烷-2,3-二醇在Nb2O5.nH2O上脱水的动力学模拟
本研究采用Nb2O5。用nH2O脱水丁烷-2,3-二醇,丁烷-2,3-二醇可以通过发酵过程从生物质或废气中提取。实验温度范围为220°C ~ 260°C,失重时空速为0.01 ~ 0.05 min−1。主要有三种产品,包括甲基乙基酮、异丁醛和丁二烯。产物收率随反应温度的升高而升高。脱水反应的速率数据可以用Langmuir-Hinshelwood动力学和速率方程中的吸附参数很好地表示,该动力学假设产物的形成在单位点反应中是可逆的。Arrhenius图数据表明,甲基乙基酮、异丁醛和丁二烯脱水反应的表观活化能分别为19.5、24.0和23.7 kJ mol−1。对丁烷-2,3-二醇、甲基乙基酮、异丁醛和丁二烯的吸附能分别为−182.4、−142.1、−136.1和−105.6 kJ mol−1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
5
审稿时长
2.3 months
期刊介绍: The journal covers the fields of kinetics and mechanisms of chemical processes in the gas phase and solution of both simple and complex systems.
期刊最新文献
Understanding the rate-limiting step adsorption kinetics onto biomaterials for mechanism adsorption control Entropy controlled reaction of piperidine with isatin derivatives in 80% aqueous methanol Kinetics and mechanism of the oxidation of furfural by benzimidazolium dichromate under non aqueous medium Melting aspects in flow of second grade nanomaterial with homogeneous–heterogeneous reactions and irreversibility phenomenon: A residual error analysis Two coordination polymers: Crystal structures, prevention and nursing values on postoperative infection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1