A Sustainable Preparation of Functional Perylenophanes by Domino Metathesis

H. Langhals, Maximilian Rauscher, P. Mayer
{"title":"A Sustainable Preparation of Functional Perylenophanes by Domino Metathesis","authors":"H. Langhals, Maximilian Rauscher, P. Mayer","doi":"10.4236/GSC.2019.92004","DOIUrl":null,"url":null,"abstract":"A sustainable four-step synthesis of soluble perylenophanes for applications as fluorescent optical functional materials is presented and even allows upscaling because of starting with technical bulk products. Thus, terminal alkenylnitriles were alkylated reduced to amines, condensed with perylenetetracarboxylic bisanhydride and cyclised to cyclophanes by means of double cross metathesis in yields until 69% of isolated dyes. The first metathesis by means of the second-generation Hoveyda-Grubbs-catalyst brings the remaining reactive olefinic groups close together favouring the ring-closure to the cyclophanes where the locked neighboring of chromophores in a skew arrangement induce strong exciton interactions. The latter cause an increased the Stokes’ separation by means of a moderate hypsochromic shift of light absorption and a stronger bathochromic shift of fluorescence. Various applications such as for lasers, photonics, solar collectors or in analytics are discussed.","PeriodicalId":12770,"journal":{"name":"Green and Sustainable Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green and Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/GSC.2019.92004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A sustainable four-step synthesis of soluble perylenophanes for applications as fluorescent optical functional materials is presented and even allows upscaling because of starting with technical bulk products. Thus, terminal alkenylnitriles were alkylated reduced to amines, condensed with perylenetetracarboxylic bisanhydride and cyclised to cyclophanes by means of double cross metathesis in yields until 69% of isolated dyes. The first metathesis by means of the second-generation Hoveyda-Grubbs-catalyst brings the remaining reactive olefinic groups close together favouring the ring-closure to the cyclophanes where the locked neighboring of chromophores in a skew arrangement induce strong exciton interactions. The latter cause an increased the Stokes’ separation by means of a moderate hypsochromic shift of light absorption and a stronger bathochromic shift of fluorescence. Various applications such as for lasers, photonics, solar collectors or in analytics are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多米诺复分解法制备功能性过烯酸的研究
提出了一种可持续的四步法合成可溶过二烯醚,用于荧光光学功能材料,甚至可以扩大规模,因为从技术批量产品开始。因此,末端烯基腈被烷基化还原为胺,与苝四羧酸二酸酐缩合,并通过双交叉复分解环化成环番,收率达到69%。通过第二代hoveyda - grubbs催化剂进行的第一次复分解使剩余的活性烯烃基团靠近在一起,有利于环烷的环封闭,在环烷中,发色团的锁定相邻以歪斜排列诱导强烈的激子相互作用。后者通过适度的光吸收的次色移和更强的荧光的深色移来增加Stokes分离。各种应用,如激光,光子学,太阳能集热器或在分析进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a Certified Reference Material from Caffeine Solution for Assuring the Quality of Food and Drug Measurements Environmentally Friendly Room Temperature Synthesis of 1-Tetralone over Layered Double Hydroxide-Hosted Sulphonato-Salen-Nickel(II) Complex Production of Biogas from Olive Mill Waste Waters Treated by Cow Manure Wastewater Treatment Trial by Double Filtration on Granular Activated Carbon (GAC) Prepared from Peanut Shells Electrochemically and Ultrasonically-Enhanced Coagulation for Algae Removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1