Comparison of Autonomous Orbit Determination for Satellite Pairs in Lunar Halo and Distant Retrograde Orbits

IF 2 3区 地球科学 Q1 ENGINEERING, AEROSPACE Navigation-Journal of the Institute of Navigation Pub Date : 2022-01-01 DOI:10.33012/navi.522
Zhaofeng Gao, X. Hou
{"title":"Comparison of Autonomous Orbit Determination for Satellite Pairs in Lunar Halo and Distant Retrograde Orbits","authors":"Zhaofeng Gao, X. Hou","doi":"10.33012/navi.522","DOIUrl":null,"url":null,"abstract":"is carried out. A factor called dynamic and geometric dilution of precision (DAGDOP) is proposed to simultaneously incorporate influences from the dynamics and geometry of satellite pairs. Based on the DAGDOP, the effect of different observation arcs on the AOD accuracy is investigated. Next, the AOD accuracy of three different types of satellite pairs—halo+halo, DRO+DRO, and halo+DRO—is systematically analyzed. The hybrid halo+DRO type shows the best overall accuracy. Finally, the AOD performance of the hybrid type is verified in a realistic model. Our studies find that the average AOD accuracy of the halo orbit is about 170 meters, and that of the DRO is about 190 meters. The relative time synchronization error of two satellites is less than 30 nanoseconds.","PeriodicalId":56075,"journal":{"name":"Navigation-Journal of the Institute of Navigation","volume":"1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Navigation-Journal of the Institute of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33012/navi.522","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1

Abstract

is carried out. A factor called dynamic and geometric dilution of precision (DAGDOP) is proposed to simultaneously incorporate influences from the dynamics and geometry of satellite pairs. Based on the DAGDOP, the effect of different observation arcs on the AOD accuracy is investigated. Next, the AOD accuracy of three different types of satellite pairs—halo+halo, DRO+DRO, and halo+DRO—is systematically analyzed. The hybrid halo+DRO type shows the best overall accuracy. Finally, the AOD performance of the hybrid type is verified in a realistic model. Our studies find that the average AOD accuracy of the halo orbit is about 170 meters, and that of the DRO is about 190 meters. The relative time synchronization error of two satellites is less than 30 nanoseconds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
月晕和遥远逆行轨道卫星对自主定轨的比较
执行。提出了一种称为动态和几何精度稀释系数(DAGDOP)的因子来同时考虑卫星对的动力学和几何的影响。基于DAGDOP,研究了不同观测弧对AOD精度的影响。其次,系统分析了光环+光环、DRO+DRO和光环+DRO三种不同类型卫星对的AOD精度。混合光晕+DRO类型显示最佳的整体精度。最后,在实际模型中验证了混合型的AOD性能。我们的研究发现,光晕轨道的平均AOD精度约为170米,DRO轨道的平均AOD精度约为190米。两星相对时间同步误差小于30纳秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Navigation-Journal of the Institute of Navigation
Navigation-Journal of the Institute of Navigation ENGINEERING, AEROSPACE-REMOTE SENSING
CiteScore
5.60
自引率
13.60%
发文量
31
期刊介绍: NAVIGATION is a quarterly journal published by The Institute of Navigation. The journal publishes original, peer-reviewed articles on all areas related to the science, engineering and art of Positioning, Navigation and Timing (PNT) covering land (including indoor use), sea, air and space applications. PNT technologies of interest encompass navigation satellite systems (both global and regional), inertial navigation, electro-optical systems including LiDAR and imaging sensors, and radio-frequency ranging and timing systems, including those using signals of opportunity from communication systems and other non-traditional PNT sources. Articles about PNT algorithms and methods, such as for error characterization and mitigation, integrity analysis, PNT signal processing and multi-sensor integration, are welcome. The journal also accepts articles on non-traditional applications of PNT systems, including remote sensing of the Earth’s surface or atmosphere, as well as selected historical and survey articles.
期刊最新文献
Atom Strapdown: Toward Integrated Quantum Inertial Navigation Systems Navigation Safety Assurance of a KF-Based GNSS/IMU System: Protection Levels Against IMU Failure PRN Sequence Estimation with a Self-Calibrating 40-Element Antenna Array Preliminary Analysis of BDS-3 Performance for ARAIM Development and Validation of a Multipath Mitigation Technique Using Multi-Correlator Structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1