A. Ladmia, Younes bin Darak Al Blooshi, A. Alobedli, Dragoljub Zivanov, M. Kuliyev, Eric Deblais, Manal Al Beshr, Ahmed Al Shmakhy, Fouad Abdullsalam, Amer El Bekshy, M. Almarzooqi, Sahid Maulana, Amirul Bin Ali, Hela Douik, Bashaer Al Jaberi, A. Abdelkerim
{"title":"Downhole Oil Water Separation to Handle Produced Water Study Case Onshore & Offshore Fields Abu Dhabi","authors":"A. Ladmia, Younes bin Darak Al Blooshi, A. Alobedli, Dragoljub Zivanov, M. Kuliyev, Eric Deblais, Manal Al Beshr, Ahmed Al Shmakhy, Fouad Abdullsalam, Amer El Bekshy, M. Almarzooqi, Sahid Maulana, Amirul Bin Ali, Hela Douik, Bashaer Al Jaberi, A. Abdelkerim","doi":"10.2118/205996-ms","DOIUrl":null,"url":null,"abstract":"\n The expected profiles of the water produced from the mature ADNOC fields in the coming years imply a 5-fold increase and the OPEX of the produced / injected water will increase considerably. This requires in-situ water separation and reinjection. The objective is to reduce the cost of handling produced water and to extend the well natural flow performance resulting in increased and accelerated production.\n The current practice of handling produced water is inexpensive in the short term, but it can affect the operating cost and the recovery in the long term as the expected water cut for the next 10-15 years is high. A new water management tool called downhole separation technology was developed. It separates Oil & Gas from produced water inside the wellbore and injects the produced water into the disposal wells. The Downhole Oil Water Separation Technology is one of the key development strategies that will reduce the handling Produced water, improve the recovery, and minimize field development cost by eliminating surface water treatment and disposal well. The main benefits for DHOWS are to accelerate Oil Offtake, reduce Production Cost, Lower Water Production and Improve facility Utilization. DHOWS require specific criteria to meet the objectives of the well. Multi-disciplined inputs are needed to properly install effective DHOWS, but robust design often brings strong performance. This paper describes the fundamental criteria and workflow for selecting the most suitable DHOWS design for new and sidetracked wells to deliver ADNOC production mandates cost effectively while meeting completion requirements and adhering to reservoir management guidelines.","PeriodicalId":10965,"journal":{"name":"Day 3 Thu, September 23, 2021","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, September 23, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205996-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The expected profiles of the water produced from the mature ADNOC fields in the coming years imply a 5-fold increase and the OPEX of the produced / injected water will increase considerably. This requires in-situ water separation and reinjection. The objective is to reduce the cost of handling produced water and to extend the well natural flow performance resulting in increased and accelerated production.
The current practice of handling produced water is inexpensive in the short term, but it can affect the operating cost and the recovery in the long term as the expected water cut for the next 10-15 years is high. A new water management tool called downhole separation technology was developed. It separates Oil & Gas from produced water inside the wellbore and injects the produced water into the disposal wells. The Downhole Oil Water Separation Technology is one of the key development strategies that will reduce the handling Produced water, improve the recovery, and minimize field development cost by eliminating surface water treatment and disposal well. The main benefits for DHOWS are to accelerate Oil Offtake, reduce Production Cost, Lower Water Production and Improve facility Utilization. DHOWS require specific criteria to meet the objectives of the well. Multi-disciplined inputs are needed to properly install effective DHOWS, but robust design often brings strong performance. This paper describes the fundamental criteria and workflow for selecting the most suitable DHOWS design for new and sidetracked wells to deliver ADNOC production mandates cost effectively while meeting completion requirements and adhering to reservoir management guidelines.