4D-PET reconstruction of dynamic non-small cell lung cancer [18-F]-FMISO-PET data using adaptive-knot cubic B-splines

G. Ralli, D. McGowan, M. Chappell, Ricky A. Sharma, G. Higgins, J. Fenwick
{"title":"4D-PET reconstruction of dynamic non-small cell lung cancer [18-F]-FMISO-PET data using adaptive-knot cubic B-splines","authors":"G. Ralli, D. McGowan, M. Chappell, Ricky A. Sharma, G. Higgins, J. Fenwick","doi":"10.1109/ISBI.2017.7950729","DOIUrl":null,"url":null,"abstract":"4D-PET reconstruction has the potential to significantly increase the signal-to-noise ratio in dynamic PET by fitting smooth temporal functions during the reconstruction. However, the optimal choice of temporal function remains an open question. A 4D-PET reconstruction algorithm using adaptive-knot cubic B-splines is proposed. Using realistic Monte-Carlo simulated data from a digital patient phantom representing an [18-F]-FMISO-PET scan of a non-small cell lung cancer patient, this method was compared to a spectral model based 4D-PET reconstruction and the conventional MLEM and MAP algorithms. Within the entire patient region the proposed algorithm produced the best bias-noise trade-off, while within the tumor region the spline- and spectral model-based reconstructions gave comparable results.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"62 1","pages":"1189-1192"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

4D-PET reconstruction has the potential to significantly increase the signal-to-noise ratio in dynamic PET by fitting smooth temporal functions during the reconstruction. However, the optimal choice of temporal function remains an open question. A 4D-PET reconstruction algorithm using adaptive-knot cubic B-splines is proposed. Using realistic Monte-Carlo simulated data from a digital patient phantom representing an [18-F]-FMISO-PET scan of a non-small cell lung cancer patient, this method was compared to a spectral model based 4D-PET reconstruction and the conventional MLEM and MAP algorithms. Within the entire patient region the proposed algorithm produced the best bias-noise trade-off, while within the tumor region the spline- and spectral model-based reconstructions gave comparable results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用自适应结三次b样条重建动态非小细胞肺癌[18-F]-FMISO-PET数据
4D-PET重建有可能通过在重建过程中拟合平滑的时间函数来显著提高动态PET的信噪比。然而,时间函数的最佳选择仍然是一个悬而未决的问题。提出了一种基于自适应结三次b样条的4D-PET重建算法。使用来自代表非小细胞肺癌患者[18-F]-FMISO-PET扫描的数字患者幻影的真实蒙特卡罗模拟数据,将该方法与基于光谱模型的4D-PET重建以及传统的MLEM和MAP算法进行比较。在整个患者区域内,所提出的算法产生了最佳的偏置-噪声权衡,而在肿瘤区域内,基于样条和光谱模型的重建给出了可比的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of adrenal lesions through spatial Bayesian modeling of GLCM Correction of partial volume effect in 99mTc-TRODAT-1 brain SPECT images using an edge-preserving weighted regularization Two-dimensional speckle tracking using parabolic polynomial expansion with Riesz transform Elastic registration of high-resolution 3D PLI data of the human brain Registration of ultra-high resolution 3D PLI data of human brain sections to their corresponding high-resolution counterpart
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1