P. Geoffroy, E. Curis, C. Courtin, J. Moreira, Thomas Morvillers, B. Étain, J. Laplanche, F. Bellivier, C. Marie-Claire
{"title":"Lithium response in bipolar disorders and core clock genes expression","authors":"P. Geoffroy, E. Curis, C. Courtin, J. Moreira, Thomas Morvillers, B. Étain, J. Laplanche, F. Bellivier, C. Marie-Claire","doi":"10.1080/15622975.2017.1282174","DOIUrl":null,"url":null,"abstract":"Abstract Objectives: We examine whether the lithium response is associated with changes in the expression of core clock genes. Methods: The effect of a therapeutic concentration of lithium (1 mM) on the expression levels of 17 circadian genes was examined in lymphoblastoid cell lines (LCLs) derived from two well-characterized groups of bipolar disorder patients, defined as lithium non-responders (NR, n = 20) or excellent responders (ER, n = 16). Quantitative real-time PCR (qRT-PCR) was conducted at 2, 4 and 8 days (d2, d4 and d8) with and without lithium exposure. Results: At d2, in ER only, BHLHE41, RORA, PER1, ARNTL, CRY2, BHLHE40 and CSNK1D were upregulated, whereas NR1D1 was downregulated. At d4, in ER only, CRY1 was downregulated. At d8, in NR only, GSK3β was upregulated and DBP, TIMELESS and CRY1 were downregulated. Significant Group × Lithium interactions existed for NR1D1 at d2 (P = 0.02), and CRY1 at d4 (P = 0.02). Longitudinal analyses showed differential temporal evolutions between NR and ER (significant Time × Group interaction) for PER3, NR1D1, DBP, RORA, CSNK1D and TIMELESS; and a significant Time × Lithium interaction for NR1D1. Coexpression data analyses suggested distinct groups of circadian genes concurrently modulated by lithium. Conclusions: In LCLs, lithium influences expression of circadian genes with differences in amplitude and kinetics according to the patient’s lithium response status.","PeriodicalId":22963,"journal":{"name":"The World Journal of Biological Psychiatry","volume":"7 1","pages":"619 - 632"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Journal of Biological Psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15622975.2017.1282174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51
Abstract
Abstract Objectives: We examine whether the lithium response is associated with changes in the expression of core clock genes. Methods: The effect of a therapeutic concentration of lithium (1 mM) on the expression levels of 17 circadian genes was examined in lymphoblastoid cell lines (LCLs) derived from two well-characterized groups of bipolar disorder patients, defined as lithium non-responders (NR, n = 20) or excellent responders (ER, n = 16). Quantitative real-time PCR (qRT-PCR) was conducted at 2, 4 and 8 days (d2, d4 and d8) with and without lithium exposure. Results: At d2, in ER only, BHLHE41, RORA, PER1, ARNTL, CRY2, BHLHE40 and CSNK1D were upregulated, whereas NR1D1 was downregulated. At d4, in ER only, CRY1 was downregulated. At d8, in NR only, GSK3β was upregulated and DBP, TIMELESS and CRY1 were downregulated. Significant Group × Lithium interactions existed for NR1D1 at d2 (P = 0.02), and CRY1 at d4 (P = 0.02). Longitudinal analyses showed differential temporal evolutions between NR and ER (significant Time × Group interaction) for PER3, NR1D1, DBP, RORA, CSNK1D and TIMELESS; and a significant Time × Lithium interaction for NR1D1. Coexpression data analyses suggested distinct groups of circadian genes concurrently modulated by lithium. Conclusions: In LCLs, lithium influences expression of circadian genes with differences in amplitude and kinetics according to the patient’s lithium response status.