Effective color correction pipeline for a noisy image

Kenta Takahashi, Yusuke Monno, Masayuki Tanaka, M. Okutomi
{"title":"Effective color correction pipeline for a noisy image","authors":"Kenta Takahashi, Yusuke Monno, Masayuki Tanaka, M. Okutomi","doi":"10.1109/ICIP.2016.7533111","DOIUrl":null,"url":null,"abstract":"Color correction is an essential image processing operation that transforms a camera-dependent RGB color space to a standard color space, e.g., the XYZ or the sRGB color space. The color correction is typically performed by multiplying the camera RGB values by a color correction matrix, which often amplifies image noise. In this paper, we propose an effective color correction pipeline for a noisy image. The proposed pipeline consists of two parts; the color correction and denoising. In the color correction part, we utilize spatially varying color correction (SVCC) that adaptively calculates the color correction matrices for each local image block considering the noise effect. Although the SVCC can effectively suppress the noise amplification, the noise is still included in the color corrected image, where the noise levels spatially vary for each local block. In the denoising part, we propose an effective denoising framework for the color corrected image with spatially varying noise levels. Experimental results demonstrate that the proposed color correction pipeline outperforms existing algorithms for various noise levels.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"92 1","pages":"4002-4006"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7533111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Color correction is an essential image processing operation that transforms a camera-dependent RGB color space to a standard color space, e.g., the XYZ or the sRGB color space. The color correction is typically performed by multiplying the camera RGB values by a color correction matrix, which often amplifies image noise. In this paper, we propose an effective color correction pipeline for a noisy image. The proposed pipeline consists of two parts; the color correction and denoising. In the color correction part, we utilize spatially varying color correction (SVCC) that adaptively calculates the color correction matrices for each local image block considering the noise effect. Although the SVCC can effectively suppress the noise amplification, the noise is still included in the color corrected image, where the noise levels spatially vary for each local block. In the denoising part, we propose an effective denoising framework for the color corrected image with spatially varying noise levels. Experimental results demonstrate that the proposed color correction pipeline outperforms existing algorithms for various noise levels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有效的颜色校正管道的噪声图像
色彩校正是一项基本的图像处理操作,它将依赖于相机的RGB色彩空间转换为标准色彩空间,例如XYZ或sRGB色彩空间。色彩校正通常通过将相机RGB值乘以色彩校正矩阵来执行,这通常会放大图像噪声。本文提出了一种有效的噪声图像色彩校正管道。拟议的管道由两部分组成;色彩校正和去噪。在色彩校正部分,我们利用空间变化色彩校正(SVCC),考虑噪声影响自适应计算每个局部图像块的色彩校正矩阵。虽然SVCC可以有效地抑制噪声放大,但噪声仍然包含在颜色校正后的图像中,其中每个局部块的噪声水平在空间上是不同的。在去噪部分,我们提出了一种有效的去噪框架,用于具有空间变化噪声水平的彩色校正图像。实验结果表明,所提出的颜色校正管道在各种噪声水平下都优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content-adaptive pyramid representation for 3D object classification Automating the measurement of physiological parameters: A case study in the image analysis of cilia motion Horizon based orientation estimation for planetary surface navigation Softcast with per-carrier power-constrained channels Speeding-up a convolutional neural network by connecting an SVM network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1