One class classification applied in facial image analysis

V. Mygdalis, Alexandros Iosifidis, A. Tefas, I. Pitas
{"title":"One class classification applied in facial image analysis","authors":"V. Mygdalis, Alexandros Iosifidis, A. Tefas, I. Pitas","doi":"10.1109/ICIP.2016.7532637","DOIUrl":null,"url":null,"abstract":"In this paper, we apply One-Class Classification methods in facial image analysis problems. We consider the cases where the available training data information originates from one class, or one of the available classes is of high importance. We propose a novel extension of the One-Class Extreme Learning Machines algorithm aiming at minimizing both the training error and the data dispersion and consider solutions that generate decision functions in the ELM space, as well as in ELM spaces of arbitrary dimensionality. We evaluate the performance in publicly available datasets. The proposed method compares favourably to other state-of-the-art choices.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"1644-1648"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper, we apply One-Class Classification methods in facial image analysis problems. We consider the cases where the available training data information originates from one class, or one of the available classes is of high importance. We propose a novel extension of the One-Class Extreme Learning Machines algorithm aiming at minimizing both the training error and the data dispersion and consider solutions that generate decision functions in the ELM space, as well as in ELM spaces of arbitrary dimensionality. We evaluate the performance in publicly available datasets. The proposed method compares favourably to other state-of-the-art choices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类分类在人脸图像分析中的应用
本文将一类分类方法应用于人脸图像分析问题。我们考虑可用的训练数据信息来自一个类的情况,或者其中一个可用的类是非常重要的。我们提出了一类极限学习机算法的新扩展,旨在最小化训练误差和数据分散,并考虑在ELM空间以及任意维的ELM空间中生成决策函数的解决方案。我们在公开可用的数据集中评估性能。所提出的方法比其他最先进的选择更有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content-adaptive pyramid representation for 3D object classification Automating the measurement of physiological parameters: A case study in the image analysis of cilia motion Horizon based orientation estimation for planetary surface navigation Softcast with per-carrier power-constrained channels Speeding-up a convolutional neural network by connecting an SVM network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1