Jing Bai , Peng Kang , Wenbo Zhang , Kunyang Chen , Yu Zhang , Ding Zhou , Huabo Duan
{"title":"Feasibility study on using excavated soil and rock to sintering utilization","authors":"Jing Bai , Peng Kang , Wenbo Zhang , Kunyang Chen , Yu Zhang , Ding Zhou , Huabo Duan","doi":"10.1016/j.cec.2022.100007","DOIUrl":null,"url":null,"abstract":"<div><p>Urban construction, especially the ongoing large-scale expansion and utilization of underground space, has resulted in massive excavated soil and rock (ESR) from buildings and subways. Therefore, this study aims to explore the technical ways of ESR sintering utilization from the perspective of technology, environment, and policy through qualitative and quantitative methods. The study analyzes the soil properties and distribution of different depths, and the annual production of clay-rich ESR accounts for about 30 million m³ in Shenzhen. More importantly, the comparison between various pollutant concentrations of ESR in Shenzhen and local soil background values showed that the ESR in Shenzhen had no environmental risks. This study can not only provide a scientific basis for ESR as the raw material of sintering but also provide a theoretical basis for the promotion of the pilot of “Zero waste city”.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"1 1","pages":"Article 100007"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167722000073/pdfft?md5=bf6994383b1af744ca7afa9af83b8859&pid=1-s2.0-S2773167722000073-main.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circular Economy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773167722000073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Urban construction, especially the ongoing large-scale expansion and utilization of underground space, has resulted in massive excavated soil and rock (ESR) from buildings and subways. Therefore, this study aims to explore the technical ways of ESR sintering utilization from the perspective of technology, environment, and policy through qualitative and quantitative methods. The study analyzes the soil properties and distribution of different depths, and the annual production of clay-rich ESR accounts for about 30 million m³ in Shenzhen. More importantly, the comparison between various pollutant concentrations of ESR in Shenzhen and local soil background values showed that the ESR in Shenzhen had no environmental risks. This study can not only provide a scientific basis for ESR as the raw material of sintering but also provide a theoretical basis for the promotion of the pilot of “Zero waste city”.