Stochastic Dynamic Response Analysis and Probability Evaluation of Subway Station Considering Subjected to Stochastic Earthquake Excitation

IF 2.1 4区 工程技术 Q2 GEOCHEMISTRY & GEOPHYSICS Journal of Earthquake and Tsunami Pub Date : 2021-06-07 DOI:10.1142/S1793431121400017
Qunying Fan, Rui Pang, Bin Xu, Min Jing
{"title":"Stochastic Dynamic Response Analysis and Probability Evaluation of Subway Station Considering Subjected to Stochastic Earthquake Excitation","authors":"Qunying Fan, Rui Pang, Bin Xu, Min Jing","doi":"10.1142/S1793431121400017","DOIUrl":null,"url":null,"abstract":"As a relatively new means of transportation, the subway has become an important tool for the sustainable development of many cities. Being buried deep in soil under the weight of vital infrastructure, subway stations can be vulnerable to seismic excitations. Considering the high randomness of ground motions, it is important to research the failure probability and seismic performance of the subway station based on stochastic dynamic analysis. In this paper, a probability density evolution method (PDEM) coupled with a spectral representation random function is used to analyze the stochastic dynamic response and seismic probability of a subway station. First, according to the improved power spectral density model and the seismic design code of urban rail transit structures in China (GB 50909-2014), a set of nonstationary ground motions consistent with the code spectrum are obtained. Then, a great deal of deterministic dynamic calculations for Daikai subway station considering soil–structure interaction based on elastic–plastic methods are performed. In addition, the nonlinear stochastic response analysis and the dynamic probability analysis are obtained for the subway station by solving the PDEM equation. Finally, the probability density function (PDF) and cumulative distribution function (CDF) of the subway station under stochastic earthquake excitations are obtained based on three performance indices, including drift angle in the middle column, relative vertical displacement between floor and roof, and damage area ratio (DAR). The results show that the stochastic dynamic analysis and the probability density evolution method can analyze seismic response and evaluate seismic performance of subway stations effectively. The proposed method will serve as an effective tool for the seismic design of underground structures.","PeriodicalId":50213,"journal":{"name":"Journal of Earthquake and Tsunami","volume":"9 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earthquake and Tsunami","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1142/S1793431121400017","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 4

Abstract

As a relatively new means of transportation, the subway has become an important tool for the sustainable development of many cities. Being buried deep in soil under the weight of vital infrastructure, subway stations can be vulnerable to seismic excitations. Considering the high randomness of ground motions, it is important to research the failure probability and seismic performance of the subway station based on stochastic dynamic analysis. In this paper, a probability density evolution method (PDEM) coupled with a spectral representation random function is used to analyze the stochastic dynamic response and seismic probability of a subway station. First, according to the improved power spectral density model and the seismic design code of urban rail transit structures in China (GB 50909-2014), a set of nonstationary ground motions consistent with the code spectrum are obtained. Then, a great deal of deterministic dynamic calculations for Daikai subway station considering soil–structure interaction based on elastic–plastic methods are performed. In addition, the nonlinear stochastic response analysis and the dynamic probability analysis are obtained for the subway station by solving the PDEM equation. Finally, the probability density function (PDF) and cumulative distribution function (CDF) of the subway station under stochastic earthquake excitations are obtained based on three performance indices, including drift angle in the middle column, relative vertical displacement between floor and roof, and damage area ratio (DAR). The results show that the stochastic dynamic analysis and the probability density evolution method can analyze seismic response and evaluate seismic performance of subway stations effectively. The proposed method will serve as an effective tool for the seismic design of underground structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑随机地震激励的地铁车站随机动力响应分析及概率评价
地铁作为一种相对较新的交通工具,已经成为许多城市实现可持续发展的重要工具。由于地铁站深埋于土壤中,承受着重要基础设施的重量,因此很容易受到地震的影响。考虑到地震动的高度随机性,基于随机动力分析的地铁车站破坏概率及抗震性能研究具有重要意义。本文将概率密度演化法与谱表示随机函数相结合,对某地铁车站的随机动力响应和地震概率进行了分析。首先,根据改进的功率谱密度模型和中国城市轨道交通结构抗震设计规范(GB 50909-2014),得到符合规范谱的一组非平稳地震动;然后,基于弹塑性方法,对考虑土-结构相互作用的大开地铁站进行了大量的确定性动力计算。此外,通过求解PDEM方程,得到了地铁车站的非线性随机响应分析和动力概率分析。最后,基于中柱漂移角、层顶相对竖向位移、损伤面积比等3个性能指标,得到了随机地震作用下地铁车站的概率密度函数(PDF)和累积分布函数(CDF)。结果表明,随机动力分析和概率密度演化方法可以有效地分析地铁车站的地震反应,评价其抗震性能。该方法可作为地下结构抗震设计的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Earthquake and Tsunami
Journal of Earthquake and Tsunami 地学-地球化学与地球物理
CiteScore
2.60
自引率
13.30%
发文量
38
审稿时长
>12 weeks
期刊介绍: Journal of Earthquake and Tsunami provides a common forum for scientists and engineers working in the areas of earthquakes and tsunamis to communicate and interact with one another and thereby enhance the opportunities for such cross-fertilization of ideas. The Journal publishes original papers pertaining to state-of-the-art research and development in Geological and Seismological Setting; Ground Motion, Site and Building Response; Tsunami Generation, Propagation, Damage and Mitigation, as well as Education and Risk Management following an earthquake or a tsunami. We welcome papers in the following categories: Geological and Seismological Aspects Tectonics: (Geology - earth processes) Fault processes and earthquake generation: seismology (earthquake processes) Earthquake wave propagation: geophysics Remote sensing Earthquake Engineering Geotechnical hazards and response Effects on buildings and structures Risk analysis and management Retrofitting and remediation Education and awareness Material Behaviour Soil Reinforced concrete Steel Tsunamis Tsunamigenic sources Tsunami propagation: Physical oceanography Run-up and damage: wave hydraulics.
期刊最新文献
Retrofitting Solution for Soft Story Mitigation in Reinforced Concrete Frame Buildings: A Socio-technical Approach Using Numerical Optimization Damage Spectra of SDOF Structures Under Tsunami Actions Considering the Nonlinear Dynamic Analysis Method Nonlinear dynamic behavior of semi-supported steel shear walls 1 Estimation of Damage Levels in Masonry Structures following Earthquake Impact using Deep Learning-Based Segmentation Method Theoretically derived transfer functions and specific framework for simulating spatially varying seismic underground motions of media-transition site
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1