A. Tamilvanan, K. Balamurugan, T. Mohanraj, Yesgat Admassu
{"title":"Modeling and Optimization of Electrodeposition Process for Copper Nanoparticle Synthesis Using ANN and Nature-Inspired Algorithms","authors":"A. Tamilvanan, K. Balamurugan, T. Mohanraj, Yesgat Admassu","doi":"10.1155/2023/3431836","DOIUrl":null,"url":null,"abstract":"Due to its outstanding physical, chemical, and thermal properties, an increasing consideration has been paid to produce copper (Cu) nanoparticles (NPs). Various methods are accessible for producing Cu NPs by conceiving the top–down and bottom–up approaches. Electrodeposition is a bottom–up method to synthesize high-quality Cu NPs at a low cost. The attributes of Cu NPs rely on their way of deduction and electrochemical process parameters. This work aims to deduce the mean size of Cu NPs. Artificial neural networks (ANN) and nature-inspired algorithms, namely genetic algorithm (GA), firefly algorithm (FA), and cuckoo search (CS) algorithm were used to predict and optimize the electrochemical parameters. The results obtained from ANN prediction agreed with data from the electrodeposition process. All nature-inspired algorithms reveal similar operating conditions as optimal parameters. The minimum NP size of 20 nm was obtained for the process parameters of 4 g·l−1 of CuSO4 concentration, electrode distance of 3 cm, and a potential difference of 27 V. The synthesized NP size was in line with the anticipated NP size. The scanning electron microscope and X-ray diffractometer (XRD) were performed to analyze the nanoparticle size and morphology.","PeriodicalId":16442,"journal":{"name":"Journal of Nanomaterials","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2023/3431836","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Due to its outstanding physical, chemical, and thermal properties, an increasing consideration has been paid to produce copper (Cu) nanoparticles (NPs). Various methods are accessible for producing Cu NPs by conceiving the top–down and bottom–up approaches. Electrodeposition is a bottom–up method to synthesize high-quality Cu NPs at a low cost. The attributes of Cu NPs rely on their way of deduction and electrochemical process parameters. This work aims to deduce the mean size of Cu NPs. Artificial neural networks (ANN) and nature-inspired algorithms, namely genetic algorithm (GA), firefly algorithm (FA), and cuckoo search (CS) algorithm were used to predict and optimize the electrochemical parameters. The results obtained from ANN prediction agreed with data from the electrodeposition process. All nature-inspired algorithms reveal similar operating conditions as optimal parameters. The minimum NP size of 20 nm was obtained for the process parameters of 4 g·l−1 of CuSO4 concentration, electrode distance of 3 cm, and a potential difference of 27 V. The synthesized NP size was in line with the anticipated NP size. The scanning electron microscope and X-ray diffractometer (XRD) were performed to analyze the nanoparticle size and morphology.
期刊介绍:
The overall aim of the Journal of Nanomaterials is to bring science and applications together on nanoscale and nanostructured materials with emphasis on synthesis, processing, characterization, and applications of materials containing true nanosize dimensions or nanostructures that enable novel/enhanced properties or functions. It is directed at both academic researchers and practicing engineers. Journal of Nanomaterials will highlight the continued growth and new challenges in nanomaterials science, engineering, and nanotechnology, both for application development and for basic research.