The Impact of n-stage Latent Dirichlet Allocation on Analysis of Headline Classification

Zekeriya Anil Guven, B. Diri, Tolgahan Cakaloglu
{"title":"The Impact of n-stage Latent Dirichlet Allocation on Analysis of Headline Classification","authors":"Zekeriya Anil Guven, B. Diri, Tolgahan Cakaloglu","doi":"10.7494/csci.2022.23.3.4622","DOIUrl":null,"url":null,"abstract":"Data analysis becomes difficult with the increase of large amounts of data. More specifically, extracting meaningful insights from this vast amount of data and grouping them based on their shared features without human intervention requires advanced methodologies. There are topic modeling methods to overcome this problem in text analysis for downstream tasks, such as sentiment analysis, spam detection, and news classification. In this research, we benchmark several classifiers, namely Random Forest, AdaBoost, Naive Bayes, and Logistic Regression, using the classical LDA and n-stage LDA topic modeling methods for feature extraction in headlines classification. We run our experiments on 3 and 5 classes publicly available Turkish and English datasets. We demonstrate that n-stage LDA as a feature extractor obtains state-of-the-art performance for any downstream classifier. It should also be noted that Random Forest was the most successful algorithm for both datasets.","PeriodicalId":23063,"journal":{"name":"Theor. Comput. Sci.","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/csci.2022.23.3.4622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data analysis becomes difficult with the increase of large amounts of data. More specifically, extracting meaningful insights from this vast amount of data and grouping them based on their shared features without human intervention requires advanced methodologies. There are topic modeling methods to overcome this problem in text analysis for downstream tasks, such as sentiment analysis, spam detection, and news classification. In this research, we benchmark several classifiers, namely Random Forest, AdaBoost, Naive Bayes, and Logistic Regression, using the classical LDA and n-stage LDA topic modeling methods for feature extraction in headlines classification. We run our experiments on 3 and 5 classes publicly available Turkish and English datasets. We demonstrate that n-stage LDA as a feature extractor obtains state-of-the-art performance for any downstream classifier. It should also be noted that Random Forest was the most successful algorithm for both datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
n期潜在狄利克雷分配对标题分类分析的影响
随着大量数据的增加,数据分析变得困难。更具体地说,从大量数据中提取有意义的见解,并根据它们的共同特征对它们进行分组,而无需人工干预,这需要先进的方法。在下游任务(如情感分析、垃圾邮件检测和新闻分类)的文本分析中,有一些主题建模方法可以克服这个问题。在本研究中,我们对随机森林、AdaBoost、朴素贝叶斯和逻辑回归等几种分类器进行了基准测试,使用经典的LDA和n阶段LDA主题建模方法进行标题分类中的特征提取。我们在3个和5个公开的土耳其语和英语数据集上运行我们的实验。我们证明了n级LDA作为特征提取器对于任何下游分类器都能获得最先进的性能。还应该指出的是,对于这两个数据集,随机森林是最成功的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Parameterized Complexity of s-club Cluster Deletion Problems Spiking neural P systems with weights and delays on synapses Iterated Uniform Finite-State Transducers on Unary Languages Lazy Regular Sensing State Complexity of Finite Partial Languages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1