Human iris as a biometric for identity verification

Abdul Matin, F. Mahmud, S. T. Zuhori, Barshon Sen
{"title":"Human iris as a biometric for identity verification","authors":"Abdul Matin, F. Mahmud, S. T. Zuhori, Barshon Sen","doi":"10.1109/ICECTE.2016.7879610","DOIUrl":null,"url":null,"abstract":"The use of human biometrics for automatic identity verification has become widespread. Mostly used human biometrics are face, fingerprint, iris, gait, retina, voice, hand geometry etc. Among them iris is an externally visible, yet protected organ whose unique epigenetic pattern remains stable throughout one's whole life. These characteristics make it very attractive to use as a biometric for identifying individuals. This paper presents a detailed study of iris recognition technique. It encompasses an analysis of the reliability and the accuracy of iris as a biometric of person identification. The main phases of iris recognition are segmentation, normalization, feature encoding and matching. In this work automatic segmentation is performed using circular Hough transform method. Daugman's rubber sheet model is used in normalization process. Four level phase quantization based 1D Log-Gabor filters are used to encode the unique features of iris into binary template. And finally the Hamming distance is considered to examine the affinity of two templates in matching stage. We have experimented a better recognition result for CASIA-iris-v4 database.","PeriodicalId":6578,"journal":{"name":"2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE)","volume":"25 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECTE.2016.7879610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The use of human biometrics for automatic identity verification has become widespread. Mostly used human biometrics are face, fingerprint, iris, gait, retina, voice, hand geometry etc. Among them iris is an externally visible, yet protected organ whose unique epigenetic pattern remains stable throughout one's whole life. These characteristics make it very attractive to use as a biometric for identifying individuals. This paper presents a detailed study of iris recognition technique. It encompasses an analysis of the reliability and the accuracy of iris as a biometric of person identification. The main phases of iris recognition are segmentation, normalization, feature encoding and matching. In this work automatic segmentation is performed using circular Hough transform method. Daugman's rubber sheet model is used in normalization process. Four level phase quantization based 1D Log-Gabor filters are used to encode the unique features of iris into binary template. And finally the Hamming distance is considered to examine the affinity of two templates in matching stage. We have experimented a better recognition result for CASIA-iris-v4 database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
虹膜作为一种生物特征,用于身份验证
人体生物识别技术在自动身份验证中的应用已经广泛。常用的人体生物识别技术有面部、指纹、虹膜、步态、视网膜、声音、手部几何等。其中虹膜是一种外部可见但受保护的器官,其独特的表观遗传模式在人的一生中保持稳定。这些特征使其成为识别个体的生物特征非常有吸引力。本文对虹膜识别技术进行了详细的研究。它包括虹膜的可靠性和准确性的分析,作为一个生物识别的人的身份。虹膜识别的主要阶段是分割、归一化、特征编码和匹配。在这项工作中,使用圆形霍夫变换方法进行自动分割。归一化过程采用道格曼胶板模型。采用基于四电平相位量化的一维Log-Gabor滤波器对虹膜特征进行编码。最后利用汉明距离来考察两个模板在匹配阶段的亲和力。我们对CASIA-iris-v4数据库进行了较好的识别实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An investigation of SAR inside human heart for antenna directivity, surface current variations and effect on antenna frequency in presence of heart Smoothening of wind farm output fluctuations using new pitch controller Low effective material loss microstructure fiber for THz wave guidance A new machine learning approach to select adaptive IMFs of EMD Comparison of two types of graphene coated fiber optic SPR biosensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1