{"title":"Research on an English translation method based on an improved transformer model","authors":"Hongxia Li, Xin Tuo","doi":"10.1515/jisys-2022-0038","DOIUrl":null,"url":null,"abstract":"Abstract With the expansion of people’s needs, the translation performance of traditional models is increasingly unable to meet current demands. This article mainly studied the Transformer model. First, the structure and principle of the Transformer model were briefly introduced. Then, the model was improved by a generative adversarial network (GAN) to improve the translation effect of the model. Finally, experiments were carried out on the linguistic data consortium (LDC) dataset. It was found that the average Bilingual Evaluation Understudy (BLEU) value of the improved Transformer model improved by 0.49, and the average perplexity value reduced by 10.06 compared with the Transformer model, but the computation speed was not greatly affected. The translation results of the two example sentences showed that the translation of the improved Transformer model was closer to the results of human translation. The experimental results verify that the improved Transformer model can improve the translation quality and be further promoted and applied in practice to further improve the English translation and meet application needs in real life.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"2 1","pages":"532 - 540"},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-0038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract With the expansion of people’s needs, the translation performance of traditional models is increasingly unable to meet current demands. This article mainly studied the Transformer model. First, the structure and principle of the Transformer model were briefly introduced. Then, the model was improved by a generative adversarial network (GAN) to improve the translation effect of the model. Finally, experiments were carried out on the linguistic data consortium (LDC) dataset. It was found that the average Bilingual Evaluation Understudy (BLEU) value of the improved Transformer model improved by 0.49, and the average perplexity value reduced by 10.06 compared with the Transformer model, but the computation speed was not greatly affected. The translation results of the two example sentences showed that the translation of the improved Transformer model was closer to the results of human translation. The experimental results verify that the improved Transformer model can improve the translation quality and be further promoted and applied in practice to further improve the English translation and meet application needs in real life.
期刊介绍:
The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.