Microstructual and Micro-Chemical Analysis of Zr Cladding Alloys on Corrosion and Creep Properties

IF 0.4 Q4 NUCLEAR SCIENCE & TECHNOLOGY Journal of Nuclear Fuel Cycle and Waste Technology Pub Date : 2022-08-08 DOI:10.1115/icone29-93770
Q. Y. Lv, Libin Zhang, Minli Chen, Changyuan Gao, Yang Xu, Liu-tao Chen, J. Tan
{"title":"Microstructual and Micro-Chemical Analysis of Zr Cladding Alloys on Corrosion and Creep Properties","authors":"Q. Y. Lv, Libin Zhang, Minli Chen, Changyuan Gao, Yang Xu, Liu-tao Chen, J. Tan","doi":"10.1115/icone29-93770","DOIUrl":null,"url":null,"abstract":"\n This paper conducts in-depth research on zirconium alloys by combining results of out-of-pile corrosion and creep performance with microstructual and micro-chemical analysis using state-of-the-art (S)TEM, EDX and EBSD. The mechanism of different heat treatment processes on the macroscopic properties of zirconium alloys is explained from the microscopic level.\n By comparing various Zr-Sn-Nb alloys with different intermediate temperatures, it is discovered that creep resistance becomes better and the corrosion resistance becomes worse. It is found that average grain size increases gradually with increasing intermediate temperature, creep deformation is related with grain boundary slip, so the smaller grain size, the faster creep rate. In alloys with Nb content less than its solid solution limit in zirconium, when increasing the intermediate annealing temperature, there are fewer Nb-rich Zr-Fe-Cr-Nb second phase particles (SPPs) but more Cr-rich Zr-Fe-Cr-Nb SPPs, so the amount of Nb in solid solution in the matrix increases, which lead to better creep resistance due to solid solution strengthening and lower diffusion coefficient, however, with higher Nb solid solution content, there is more tetragonal to monoclinic oxide phase transition, which causes more cracking in the oxide and increases the corrosion rate.","PeriodicalId":36762,"journal":{"name":"Journal of Nuclear Fuel Cycle and Waste Technology","volume":"7 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Fuel Cycle and Waste Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone29-93770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper conducts in-depth research on zirconium alloys by combining results of out-of-pile corrosion and creep performance with microstructual and micro-chemical analysis using state-of-the-art (S)TEM, EDX and EBSD. The mechanism of different heat treatment processes on the macroscopic properties of zirconium alloys is explained from the microscopic level. By comparing various Zr-Sn-Nb alloys with different intermediate temperatures, it is discovered that creep resistance becomes better and the corrosion resistance becomes worse. It is found that average grain size increases gradually with increasing intermediate temperature, creep deformation is related with grain boundary slip, so the smaller grain size, the faster creep rate. In alloys with Nb content less than its solid solution limit in zirconium, when increasing the intermediate annealing temperature, there are fewer Nb-rich Zr-Fe-Cr-Nb second phase particles (SPPs) but more Cr-rich Zr-Fe-Cr-Nb SPPs, so the amount of Nb in solid solution in the matrix increases, which lead to better creep resistance due to solid solution strengthening and lower diffusion coefficient, however, with higher Nb solid solution content, there is more tetragonal to monoclinic oxide phase transition, which causes more cracking in the oxide and increases the corrosion rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zr包覆合金腐蚀和蠕变性能的组织与微观化学分析
本文采用最先进的(S)TEM、EDX和EBSD技术,结合锆合金的桩外腐蚀和蠕变性能分析结果,对锆合金进行了深入的研究。从微观层面解释了不同热处理工艺对锆合金宏观性能影响的机理。通过对比不同中间温度的Zr-Sn-Nb合金,发现其抗蠕变性能变好,耐腐蚀性能变差。随着中间温度的升高,平均晶粒尺寸逐渐增大,蠕变变形与晶界滑移有关,因此晶粒尺寸越小,蠕变速率越快。在Nb含量低于锆固溶极限的合金中,随着中间退火温度的升高,富Nb的Zr-Fe-Cr-Nb第二相颗粒(SPPs)减少,富cr的Zr-Fe-Cr-Nb第二相颗粒增多,因此基体中固溶体中Nb的含量增加,固溶体中由于固溶体强化而具有较好的抗蠕变性能,扩散系数降低,但随着Nb固溶体含量的增加;有更多的四方向单斜的氧化物相变,这导致氧化物中更多的裂纹,增加了腐蚀速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
25.00%
发文量
35
期刊最新文献
Transport Risk Assessment for On-Road/Sea Transport of Decommissioning Waste of Kori Unit 1 Physicochemical Property of Borosilicate Glass for Rare Earth Waste From the PyroGreen Process Occupational Dose Analysis of Spent Resin Handling Accident During NPP Decommissioning Fissile Measurement in Various Types Using Nuclear Resonances Prediction Model for Saturated Hydraulic Conductivity of Bentonite Buffer Materials for an Engineered-Barrier System in a High-Level Radioactive Waste Repository
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1