Realtime Hand Gesture Recognition System for Human Computer Interaction

Shubhangi Tirpude, Devishree Naidu, Piyush Rajkarne, Sanket Sarile, Niraj Saraf, Raghav Maheshwari
{"title":"Realtime Hand Gesture Recognition System for Human Computer Interaction","authors":"Shubhangi Tirpude, Devishree Naidu, Piyush Rajkarne, Sanket Sarile, Niraj Saraf, Raghav Maheshwari","doi":"10.47164/ijngc.v14i1.1097","DOIUrl":null,"url":null,"abstract":"Humans are using various devices for interacting with the system like mouse, keyboard, joystick etc. We have developed a real time human computer interaction system for virtual mouse based on the hand gestures. The system is designed in 3 modules as detection of hand, recognition of gestures and human computer interaction with control of mouse events to achieve the higher degree of gesture recognition. We first capture the video using the built-in webcam or USB webcam. Each frame of hand is recognized using a media Pipe palm detection model and using opencv fingertips. The user can move the mouse cursor by moving their fingertip and can perform a click by bringing two fingertips to close. So, this system captures frames using a webcam and detects the hand and fingertips and clicks or moves of the cursor. The system does not require a physical device for cursor movement. The developed system can be extended in other scenarios where human-machine interaction is required with more complex command formats rather than just mouse events.","PeriodicalId":42021,"journal":{"name":"International Journal of Next-Generation Computing","volume":"28 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Next-Generation Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47164/ijngc.v14i1.1097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Humans are using various devices for interacting with the system like mouse, keyboard, joystick etc. We have developed a real time human computer interaction system for virtual mouse based on the hand gestures. The system is designed in 3 modules as detection of hand, recognition of gestures and human computer interaction with control of mouse events to achieve the higher degree of gesture recognition. We first capture the video using the built-in webcam or USB webcam. Each frame of hand is recognized using a media Pipe palm detection model and using opencv fingertips. The user can move the mouse cursor by moving their fingertip and can perform a click by bringing two fingertips to close. So, this system captures frames using a webcam and detects the hand and fingertips and clicks or moves of the cursor. The system does not require a physical device for cursor movement. The developed system can be extended in other scenarios where human-machine interaction is required with more complex command formats rather than just mouse events.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人机交互实时手势识别系统
人类正在使用各种设备与系统进行交互,如鼠标、键盘、操纵杆等。我们开发了一种基于手势的虚拟鼠标实时人机交互系统。系统设计为手部检测、手势识别、人机交互以及鼠标事件控制3个模块,实现了更高程度的手势识别。我们首先使用内置的网络摄像头或USB网络摄像头捕捉视频。使用media Pipe手掌检测模型和opencv指尖识别手的每一帧。用户可以通过移动指尖来移动鼠标光标,也可以通过将两个指尖合拢来执行点击操作。所以,这个系统使用网络摄像头捕捉画面,检测手和指尖,点击或移动光标。系统不需要物理设备来移动光标。开发的系统可以扩展到需要更复杂命令格式的人机交互的其他场景,而不仅仅是鼠标事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Next-Generation Computing
International Journal of Next-Generation Computing COMPUTER SCIENCE, THEORY & METHODS-
自引率
66.70%
发文量
60
期刊最新文献
Integrating Smartphone Sensor Technology to Enhance Fine Motor and Working Memory Skills in Pediatric Obesity: A Gamified Approach Deep Learning based Semantic Segmentation for Buildings Detection from Remote Sensing Images Machine Learning-assisted Distance Based Residual Energy Aware Clustering Algorithm for Energy Efficient Information Dissemination in Urban VANETs High Utility Itemset Extraction using PSO with Online Control Parameter Calibration Alzheimer’s Disease Classification using Feature Enhanced Deep Convolutional Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1