{"title":"Design of embedded acoustic image acquisition system for wireless sensor network","authors":"Xiaoping Huang, Fan Wen, Wei Zhongxin","doi":"10.3233/JIFS-219106","DOIUrl":null,"url":null,"abstract":"In recent years, with the development of communication technology, embedded computing technology and sensor technology, it has become increasingly mature. Micro sensors with sensing, computing and communication capabilities have appeared in large numbers and developed rapidly, making wireless sensor networks widely used. People put forward higher requirements for the accuracy, reliability and flexibility of the image acquisition system. The image transmission system using analog technology not only has low image quality, but also has a serious waste of system resources, is not easy to form a complex network structure, and has poor functional scalability. In view of the actual needs of the current image acquisition and wireless transmission system, based on embedded technology, image acquisition, processing technology and network transmission technology, this paper proposes and designs a low-cost, high-reliability embedded image acquisition and wireless transmission system. Experimental tests show that this system has reasonable design, high video coding efficiency, good image continuity, stable operation, and basically realizes the display, storage and playback functions of the collected video data. Improve the transmission rate of the system and reduce the distortion caused by compression in terms of image compression. At the same time, it supports multiple image resolutions, frame rate options and multiple video formats, and the system’s transmission rate can adapt to the state of the network. This design fulfills the basic requirements of an embedded image acquisition system based on network technology, and provides a good foundation for the next development of a gigabit network-based image acquisition system.","PeriodicalId":44705,"journal":{"name":"International Journal of Fuzzy Logic and Intelligent Systems","volume":"1 1","pages":"1-8"},"PeriodicalIF":1.5000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fuzzy Logic and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/JIFS-219106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, with the development of communication technology, embedded computing technology and sensor technology, it has become increasingly mature. Micro sensors with sensing, computing and communication capabilities have appeared in large numbers and developed rapidly, making wireless sensor networks widely used. People put forward higher requirements for the accuracy, reliability and flexibility of the image acquisition system. The image transmission system using analog technology not only has low image quality, but also has a serious waste of system resources, is not easy to form a complex network structure, and has poor functional scalability. In view of the actual needs of the current image acquisition and wireless transmission system, based on embedded technology, image acquisition, processing technology and network transmission technology, this paper proposes and designs a low-cost, high-reliability embedded image acquisition and wireless transmission system. Experimental tests show that this system has reasonable design, high video coding efficiency, good image continuity, stable operation, and basically realizes the display, storage and playback functions of the collected video data. Improve the transmission rate of the system and reduce the distortion caused by compression in terms of image compression. At the same time, it supports multiple image resolutions, frame rate options and multiple video formats, and the system’s transmission rate can adapt to the state of the network. This design fulfills the basic requirements of an embedded image acquisition system based on network technology, and provides a good foundation for the next development of a gigabit network-based image acquisition system.
期刊介绍:
The International Journal of Fuzzy Logic and Intelligent Systems (pISSN 1598-2645, eISSN 2093-744X) is published quarterly by the Korean Institute of Intelligent Systems. The official title of the journal is International Journal of Fuzzy Logic and Intelligent Systems and the abbreviated title is Int. J. Fuzzy Log. Intell. Syst. Some, or all, of the articles in the journal are indexed in SCOPUS, Korea Citation Index (KCI), DOI/CrossrRef, DBLP, and Google Scholar. The journal was launched in 2001 and dedicated to the dissemination of well-defined theoretical and empirical studies results that have a potential impact on the realization of intelligent systems based on fuzzy logic and intelligent systems theory. Specific topics include, but are not limited to: a) computational intelligence techniques including fuzzy logic systems, neural networks and evolutionary computation; b) intelligent control, instrumentation and robotics; c) adaptive signal and multimedia processing; d) intelligent information processing including pattern recognition and information processing; e) machine learning and smart systems including data mining and intelligent service practices; f) fuzzy theory and its applications.