How Much Liquidity Would a Liquidity-saving Mechanism save If a Liquidity-saving Mechanism Could save Liquidity? A Simulation Approach for Canada’s Large-value Payment System
{"title":"How Much Liquidity Would a Liquidity-saving Mechanism save If a Liquidity-saving Mechanism Could save Liquidity? A Simulation Approach for Canada’s Large-value Payment System","authors":"Shaun Byck, Ronald Heijmans","doi":"10.2139/ssrn.3581600","DOIUrl":null,"url":null,"abstract":"Canada’s Large Value Transfer System (LVTS) is in the process of being replaced by a real-time gross settlement (RTGS) system. A pure RTGS system typically requires participants to hold substantial amounts of intraday liquidity in order to settle their payment obligations. Implementing one or more liquidity-saving mechanisms (LSMs) can reduce the amount of liquidity that participants need to hold. This paper investigates how much liquidity requirements can be reduced with the implementation of different LSMs in the Financial Network Analytics simulation engine using LVTS transaction data from 2018. These LSMs include (1) bilateral offsetting, (2) FIFO–bypass, (3) multilateral offsetting and (4) a combination of all LSMs. We simulate two different scenarios at varying levels of the upper bound of liquidity. In the first scenario, all payments from Tranche 1, which are considered time critical, are settled in a pure RTGS payment stream, while less time-critical Tranche 2 payments are settled in a payment stream with LSMs. In the second scenario, we settle all payments (Tranches 1 and 2) in the LSM stream. Our results show that when there is ample liquidity available in the system, there is minimal benefit from LSMs, as payments are settled without much delay: the effectiveness of LSMs increases as the amount of intraday liquidity decreases. A combination of LSMs shows a reduction in liquidity requirements that is larger than any one individual LSM.<br><br>","PeriodicalId":41226,"journal":{"name":"Journal of Financial Market Infrastructures","volume":"65 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Market Infrastructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3581600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 4
Abstract
Canada’s Large Value Transfer System (LVTS) is in the process of being replaced by a real-time gross settlement (RTGS) system. A pure RTGS system typically requires participants to hold substantial amounts of intraday liquidity in order to settle their payment obligations. Implementing one or more liquidity-saving mechanisms (LSMs) can reduce the amount of liquidity that participants need to hold. This paper investigates how much liquidity requirements can be reduced with the implementation of different LSMs in the Financial Network Analytics simulation engine using LVTS transaction data from 2018. These LSMs include (1) bilateral offsetting, (2) FIFO–bypass, (3) multilateral offsetting and (4) a combination of all LSMs. We simulate two different scenarios at varying levels of the upper bound of liquidity. In the first scenario, all payments from Tranche 1, which are considered time critical, are settled in a pure RTGS payment stream, while less time-critical Tranche 2 payments are settled in a payment stream with LSMs. In the second scenario, we settle all payments (Tranches 1 and 2) in the LSM stream. Our results show that when there is ample liquidity available in the system, there is minimal benefit from LSMs, as payments are settled without much delay: the effectiveness of LSMs increases as the amount of intraday liquidity decreases. A combination of LSMs shows a reduction in liquidity requirements that is larger than any one individual LSM.