Sundus Naji Alaziz, Bakr Albayati, A. A. El-Bagoury, Wasswa Shafik
{"title":"Clustering of COVID-19 Multi-Time Series-Based K-Means and PCA With Forecasting","authors":"Sundus Naji Alaziz, Bakr Albayati, A. A. El-Bagoury, Wasswa Shafik","doi":"10.4018/ijdwm.317374","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic is one of the current universal threats to humanity. The entire world is cooperating persistently to find some ways to decrease its effect. The time series is one of the basic criteria that play a fundamental part in developing an accurate prediction model for future estimations regarding the expansion of this virus with its infective nature. The authors discuss in this paper the goals of the study, problems, definitions, and previous studies. Also they deal with the theoretical aspect of multi-time series clusters using both the K-means and the time series cluster. In the end, they apply the topics, and ARIMA is used to introduce a prototype to give specific predictions about the impact of the COVID-19 pandemic from 90 to 140 days. The modeling and prediction process is done using the available data set from the Saudi Ministry of Health for Riyadh, Jeddah, Makkah, and Dammam during the previous four months, and the model is evaluated using the Python program. Based on this proposed method, the authors address the conclusions.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.317374","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
The COVID-19 pandemic is one of the current universal threats to humanity. The entire world is cooperating persistently to find some ways to decrease its effect. The time series is one of the basic criteria that play a fundamental part in developing an accurate prediction model for future estimations regarding the expansion of this virus with its infective nature. The authors discuss in this paper the goals of the study, problems, definitions, and previous studies. Also they deal with the theoretical aspect of multi-time series clusters using both the K-means and the time series cluster. In the end, they apply the topics, and ARIMA is used to introduce a prototype to give specific predictions about the impact of the COVID-19 pandemic from 90 to 140 days. The modeling and prediction process is done using the available data set from the Saudi Ministry of Health for Riyadh, Jeddah, Makkah, and Dammam during the previous four months, and the model is evaluated using the Python program. Based on this proposed method, the authors address the conclusions.
期刊介绍:
The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving