International Real Estate Review

IF 0.4 Q4 ECONOMICS International Real Estate Review Pub Date : 2021-06-30 DOI:10.53383/100319
Kristoffer B. Birkeland, A. D'Silva, Roland Füss, A. Oust
{"title":"International Real Estate Review","authors":"Kristoffer B. Birkeland, A. D'Silva, Roland Füss, A. Oust","doi":"10.53383/100319","DOIUrl":null,"url":null,"abstract":"We develop an automated valuation model (AVM) for the residential real estate market by leveraging stacked generalization and a comparable market analysis. Specifically, we combine four novel ensemble learning methods with a repeat sales method and tailor the data selection for each value estimate. We calibrate and evaluate the model for the residential real estate market in Oslo by producing out-of-sample estimates for the value of 1,979 dwellings sold in the first quarter of 2018. Our novel approach of using stacked generalization achieves a median absolute percentage error of 5.4%, and more than 96% of the dwellings are estimated within 20% of their actual sales price. A comparison of the valuation accuracy of our AVM to that of the local estate agents in Oslo generally demonstrates its viability as a valuation tool. However, in stable market phases, the machine falls short of human capability.","PeriodicalId":44050,"journal":{"name":"International Real Estate Review","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Real Estate Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53383/100319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2

Abstract

We develop an automated valuation model (AVM) for the residential real estate market by leveraging stacked generalization and a comparable market analysis. Specifically, we combine four novel ensemble learning methods with a repeat sales method and tailor the data selection for each value estimate. We calibrate and evaluate the model for the residential real estate market in Oslo by producing out-of-sample estimates for the value of 1,979 dwellings sold in the first quarter of 2018. Our novel approach of using stacked generalization achieves a median absolute percentage error of 5.4%, and more than 96% of the dwellings are estimated within 20% of their actual sales price. A comparison of the valuation accuracy of our AVM to that of the local estate agents in Oslo generally demonstrates its viability as a valuation tool. However, in stable market phases, the machine falls short of human capability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
《国际房地产评论》
我们开发了一个住宅房地产市场的自动估值模型(AVM),利用堆叠泛化和可比市场分析。具体来说,我们将四种新颖的集成学习方法与重复销售方法相结合,并为每个价值估计定制数据选择。我们通过对2018年第一季度销售的1,979套住宅的价值进行样本外估计,来校准和评估奥斯陆住宅房地产市场的模型。我们使用堆叠泛化的新方法实现了5.4%的中位数绝对百分比误差,超过96%的住宅估计在其实际销售价格的20%以内。将我们的AVM的估值准确性与奥斯陆当地房地产经纪人的估值准确性进行比较,总体上证明了它作为估值工具的可行性。然而,在稳定的市场阶段,机器的能力不及人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
10
期刊最新文献
Analysing the Impact of Participation in Community Activities (Festivals) on Mental Health Institutional Ownership Volatility and Investment Behavior of REITs Vertical Housing Price Gradient and Ground Floor Premium in Taipei City Office Property Pricing and Macroeconomic Shocks: European Regions through the Real Estate Cycle Does Religion Affect Mortgage Delinquency?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1