Cloning, Expression and Biochemical Characterization of the Recombinant α-amylase from Bacillus subtilis YX48

IF 0.5 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Current Proteomics Pub Date : 2021-07-26 DOI:10.2174/1570164618666210726161428
Y. Shan, Junjie Shang, Dongfang Zhang, Yinshan Cui, Yi Wang, Jie Zhu, Yongkai Ma, P. Song, K. Qin, X. Ji, Yunlin Wei, Lijun Wu
{"title":"Cloning, Expression and Biochemical Characterization of the Recombinant α-amylase from Bacillus subtilis YX48","authors":"Y. Shan, Junjie Shang, Dongfang Zhang, Yinshan Cui, Yi Wang, Jie Zhu, Yongkai Ma, P. Song, K. Qin, X. Ji, Yunlin Wei, Lijun Wu","doi":"10.2174/1570164618666210726161428","DOIUrl":null,"url":null,"abstract":"\n\nAmylase used in the market is mostly medium-temperature enzyme or high-temperature enzyme and has poor enzyme activity under low-temperature environment. Acid α-amylase can be used to develop digestion additives in the pharmaceutical and healthcare industries. The amino acid sequence and structural differences among α-amylases obtained from various organisms are high enough to confer interesting biochemical diversity to the enzymes. However, low- temperature (0-50℃) amylase, with an optimum temperature and heat sensitivity, has a greater potential value than medium (50-80℃) and high (80-110℃) temperature amylases.\n\n\n\n\nThe gene amy48 from encoding extracellular α-amylase in Bacillus subtilis YX48 was successfully cloned into the pET30a (+) vector and expressed in Escherichia coli BL21 (DE3) for biochemical characterization. \n\n\n\n\nThe molecular weight of α-amylase was 75 kDa. The activity of α-amylase was not affected by Ca2+, and Amy48 had the best activity at pH 5.0 and 37℃. AMY48 has high stability over a narrow pH and temperature range (5.0-8.0 and 30-45℃). Amylase activity was strongly inhibited by Zn2+, Mn2+, Cu2+, and Fe2+ ions, but Na+, K+, and Co2+ ions stimulate its activity slightly. The purified enzyme showed gradually reduced activity in the presence of detergents. However, it was remarkably stable against EDTA and urea. \n","PeriodicalId":50601,"journal":{"name":"Current Proteomics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1570164618666210726161428","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

Amylase used in the market is mostly medium-temperature enzyme or high-temperature enzyme and has poor enzyme activity under low-temperature environment. Acid α-amylase can be used to develop digestion additives in the pharmaceutical and healthcare industries. The amino acid sequence and structural differences among α-amylases obtained from various organisms are high enough to confer interesting biochemical diversity to the enzymes. However, low- temperature (0-50℃) amylase, with an optimum temperature and heat sensitivity, has a greater potential value than medium (50-80℃) and high (80-110℃) temperature amylases. The gene amy48 from encoding extracellular α-amylase in Bacillus subtilis YX48 was successfully cloned into the pET30a (+) vector and expressed in Escherichia coli BL21 (DE3) for biochemical characterization. The molecular weight of α-amylase was 75 kDa. The activity of α-amylase was not affected by Ca2+, and Amy48 had the best activity at pH 5.0 and 37℃. AMY48 has high stability over a narrow pH and temperature range (5.0-8.0 and 30-45℃). Amylase activity was strongly inhibited by Zn2+, Mn2+, Cu2+, and Fe2+ ions, but Na+, K+, and Co2+ ions stimulate its activity slightly. The purified enzyme showed gradually reduced activity in the presence of detergents. However, it was remarkably stable against EDTA and urea.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
枯草芽孢杆菌YX48重组α-淀粉酶的克隆、表达及生化特性研究
市场上使用的淀粉酶多为中温酶或高温酶,在低温环境下酶活性较差。酸性α-淀粉酶可用于制药和保健行业开发消化添加剂。不同生物α-淀粉酶的氨基酸序列和结构差异足以赋予其有趣的生化多样性。而低温(0-50℃)淀粉酶具有最佳的温度和热敏性,比中温(50-80℃)和高温(80-110℃)淀粉酶具有更大的潜在价值。将枯草芽孢杆菌YX48胞外α-淀粉酶基因amy48成功克隆到pET30a(+)载体中,并在大肠杆菌BL21 (DE3)中表达,进行生化表征。α-淀粉酶分子量为75 kDa。α-淀粉酶活性不受Ca2+的影响,在pH 5.0和37℃条件下Amy48的活性最好。AMY48在较窄的pH值和温度范围(5.0-8.0和30-45℃)内具有较高的稳定性。Zn2+、Mn2+、Cu2+和Fe2+离子对淀粉酶活性有较强的抑制作用,而Na+、K+和Co2+离子对淀粉酶活性有轻微的刺激作用。纯化后的酶在洗涤剂的作用下活性逐渐降低。但对EDTA和尿素具有显著的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Proteomics
Current Proteomics BIOCHEMICAL RESEARCH METHODS-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
1.60
自引率
0.00%
发文量
25
审稿时长
>0 weeks
期刊介绍: Research in the emerging field of proteomics is growing at an extremely rapid rate. The principal aim of Current Proteomics is to publish well-timed in-depth/mini review articles in this fast-expanding area on topics relevant and significant to the development of proteomics. Current Proteomics is an essential journal for everyone involved in proteomics and related fields in both academia and industry. Current Proteomics publishes in-depth/mini review articles in all aspects of the fast-expanding field of proteomics. All areas of proteomics are covered together with the methodology, software, databases, technological advances and applications of proteomics, including functional proteomics. Diverse technologies covered include but are not limited to: Protein separation and characterization techniques 2-D gel electrophoresis and image analysis Techniques for protein expression profiling including mass spectrometry-based methods and algorithms for correlative database searching Determination of co-translational and post- translational modification of proteins Protein/peptide microarrays Biomolecular interaction analysis Analysis of protein complexes Yeast two-hybrid projects Protein-protein interaction (protein interactome) pathways and cell signaling networks Systems biology Proteome informatics (bioinformatics) Knowledge integration and management tools High-throughput protein structural studies (using mass spectrometry, nuclear magnetic resonance and X-ray crystallography) High-throughput computational methods for protein 3-D structure as well as function determination Robotics, nanotechnology, and microfluidics.
期刊最新文献
Exploring Phytochemical Compounds: A Computational Study for HIV-1 Reverse Transcriptase Inhibition Molecular Docking, Pharmacophore Mapping, and Virtual Screening of Novel Glucokinase Activators as Antidiabetic Agents Comprehensive Analysis of Tertiary Lymphoid Structures in Pancreatic Cancer: Molecular Characteristics and Prognostic Implications miR-124 in Neuroblastoma: Mechanistic Insights, Biomarker Potential, and Therapeutic Prospects The Relationship of Transposable Elements with Non-Coding RNAs in the Emergence of Human Proteins and Peptides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1