An Efficient Swarm based Feature Selection Technique using Random Weight Neural Network

Muhammad Manshah, Rana Aamir Raza, Saadia Ajmal, Urooj Pasha, Asghar Ali
{"title":"An Efficient Swarm based Feature Selection Technique using Random Weight Neural Network","authors":"Muhammad Manshah, Rana Aamir Raza, Saadia Ajmal, Urooj Pasha, Asghar Ali","doi":"10.52700/jn.v2i2.49","DOIUrl":null,"url":null,"abstract":"Feature selection (FS) is one of the most important pre-processing tasks in machine learning (ML) and data mining, that selects optimum features by eliminating noisy and irrelevant features from the data; to improve the generalization ability of a learning model (i.e., classifier). During the classification process, data with high dimensional feature space requires different optimization techniques to obtain better predictive performance. In this paper we present a swarm intelligence based technique called binary artificial bee colony (Binary-ABC) to obtain optimum feature subset. Different binary and multiclass datasets are utilized to evaluate the performance of our proposed technique. Experimental results show that our technique provides better generalization ability with random weight neural network (RWNN), when compare with other ML classifiers.","PeriodicalId":16381,"journal":{"name":"JOURNAL OF NANOSCOPE (JN)","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF NANOSCOPE (JN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52700/jn.v2i2.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Feature selection (FS) is one of the most important pre-processing tasks in machine learning (ML) and data mining, that selects optimum features by eliminating noisy and irrelevant features from the data; to improve the generalization ability of a learning model (i.e., classifier). During the classification process, data with high dimensional feature space requires different optimization techniques to obtain better predictive performance. In this paper we present a swarm intelligence based technique called binary artificial bee colony (Binary-ABC) to obtain optimum feature subset. Different binary and multiclass datasets are utilized to evaluate the performance of our proposed technique. Experimental results show that our technique provides better generalization ability with random weight neural network (RWNN), when compare with other ML classifiers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机权值神经网络的高效群特征选择技术
特征选择(FS)是机器学习和数据挖掘中最重要的预处理任务之一,它通过从数据中剔除噪声和不相关的特征来选择最优特征;提高学习模型(即分类器)的泛化能力。在分类过程中,高维特征空间的数据需要不同的优化技术来获得更好的预测性能。本文提出了一种基于群智能的二元人工蜂群(binary - abc)算法来获取最优特征子集。利用不同的二值和多类数据集来评估我们提出的技术的性能。实验结果表明,与其他机器学习分类器相比,我们的方法具有更好的随机权重神经网络(RWNN)泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effectiveness Of Detecting Android Malware Using Deep Learning Techniques Detection of Uric Acid in UV-VIS wavelength Regime A Comprehensive Review on Polymer Nanocomposites; Classification, Properties and Potential Applications Role of IoT during Covid-19 Crisis: Adoptions, Challenges and Reflections on the Post-Pandemic World Synthesis and characterization of silver doped calcium chromate spinel Nano- particles and Ca effect on its band gap and optical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1