{"title":"James-Stein type estimators in beta regression model: simulation and application","authors":"S. Seifollahi, Hossein BEVRANİ","doi":"10.15672/hujms.1122207","DOIUrl":null,"url":null,"abstract":"Recently, the beta regression model has been used in several fields of science to model data in the form of rate or proportion. In this paper, we propose some novel and improved methods to estimate parameters in the beta regression model. We consider a sub-space on the regression coefficients of the beta regression model and combine the unrestricted and restricted estimators then we present Stein-type and preliminary estimators. We develop the expressions for the proposed estimators' asymptotic biases and their quadratic risks. Numerical studies through Monte Carlo simulations are used to evaluate the performance of the proposed estimators in terms of their simulated relative efficiency. The results show that the proposed estimators outperform the unrestricted estimator when the restrictions hold. Finally, an empirical application is provided to demonstrate the practical usefulness of the proposed estimators.","PeriodicalId":55078,"journal":{"name":"Hacettepe Journal of Mathematics and Statistics","volume":"6 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.1122207","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Recently, the beta regression model has been used in several fields of science to model data in the form of rate or proportion. In this paper, we propose some novel and improved methods to estimate parameters in the beta regression model. We consider a sub-space on the regression coefficients of the beta regression model and combine the unrestricted and restricted estimators then we present Stein-type and preliminary estimators. We develop the expressions for the proposed estimators' asymptotic biases and their quadratic risks. Numerical studies through Monte Carlo simulations are used to evaluate the performance of the proposed estimators in terms of their simulated relative efficiency. The results show that the proposed estimators outperform the unrestricted estimator when the restrictions hold. Finally, an empirical application is provided to demonstrate the practical usefulness of the proposed estimators.
期刊介绍:
Hacettepe Journal of Mathematics and Statistics covers all aspects of Mathematics and Statistics. Papers on the interface between Mathematics and Statistics are particularly welcome, including applications to Physics, Actuarial Sciences, Finance and Economics.
We strongly encourage submissions for Statistics Section including current and important real world examples across a wide range of disciplines. Papers have innovations of statistical methodology are highly welcome. Purely theoretical papers may be considered only if they include popular real world applications.