Infrared and Visible Image Fusion of Electric Equipment Using FDST and DC-PCNN

Jindun Dai, Yadong Liu, Jin He, X. Mao, G. Sheng, Xiuchen Jiang
{"title":"Infrared and Visible Image Fusion of Electric Equipment Using FDST and DC-PCNN","authors":"Jindun Dai, Yadong Liu, Jin He, X. Mao, G. Sheng, Xiuchen Jiang","doi":"10.1109/CMD.2018.8535827","DOIUrl":null,"url":null,"abstract":"Multi-sensor image fusion leads to more abundant details and a better description of the electric equipment monitoring scene. To improve the accuracy of overheating fault localization, a novel image fusion method based on Finite Discrete Shearlet Transform (FDST) and Dual-Channel Pulse Coupled Neuron Network (DC-PCNN) is proposed for fusing infrared and visible images of electric equipment. Firstly, FDST is utilized to decompose the source images. Then, two modified-spatial-frequency motivated DC-PCNNs with different linking strengths are used to fuse low-frequency and high-frequency subbands. Finally, the final fused image is reconstructed from the fused subbands by inverse FDST. Experimental results demonstrate the proposed method can achieve a remarkable improvement in preserving detail information and outperform other typical fusion methods in both overall visual performance and objective criteria.","PeriodicalId":6529,"journal":{"name":"2018 Condition Monitoring and Diagnosis (CMD)","volume":"4 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Condition Monitoring and Diagnosis (CMD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMD.2018.8535827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Multi-sensor image fusion leads to more abundant details and a better description of the electric equipment monitoring scene. To improve the accuracy of overheating fault localization, a novel image fusion method based on Finite Discrete Shearlet Transform (FDST) and Dual-Channel Pulse Coupled Neuron Network (DC-PCNN) is proposed for fusing infrared and visible images of electric equipment. Firstly, FDST is utilized to decompose the source images. Then, two modified-spatial-frequency motivated DC-PCNNs with different linking strengths are used to fuse low-frequency and high-frequency subbands. Finally, the final fused image is reconstructed from the fused subbands by inverse FDST. Experimental results demonstrate the proposed method can achieve a remarkable improvement in preserving detail information and outperform other typical fusion methods in both overall visual performance and objective criteria.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于FDST和DC-PCNN的电气设备红外与可见光图像融合
多传感器图像融合使电气设备监控场景的细节更加丰富,描述效果更好。为了提高过热故障定位的精度,提出了一种基于有限离散Shearlet变换(FDST)和双通道脉冲耦合神经元网络(DC-PCNN)的电气设备红外和可见光图像融合方法。首先,利用FDST对源图像进行分解。然后,利用两个不同连接强度的改进型空频驱动dc - pcnn进行低频和高频子带融合。最后,通过逆FDST从融合子带重构最终融合图像。实验结果表明,该方法在保留细节信息方面取得了显著的进步,在整体视觉性能和客观标准方面都优于其他典型的融合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Author/Paper Index Partial Discharge Analysis on-site in Various High Voltage Apparatus A Novel Anomaly Localization Method on PMU Measure System Based on LS and PCA Effects of Revulcanization on XLPE Crystalline Morphology and AC Breakdown Performance Impact of Voltage Harmonics on Condition Assessment of Polluted Insulator through a Simulation Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1