Performance evaluation of nonlinear frequency modulated signals in ultrasound harmonic imaging

M. Arif, S. Harput, S. Freear
{"title":"Performance evaluation of nonlinear frequency modulated signals in ultrasound harmonic imaging","authors":"M. Arif, S. Harput, S. Freear","doi":"10.1109/ULTSYM.2010.5935665","DOIUrl":null,"url":null,"abstract":"In ultrasound harmonic imaging with linear frequency modulated (LFM) excitation, the sidelobes level in the compressed harmonic signal can be reduced by applying a windowing function. Windowing on the transmitting signal causes reduced penetration depth, whilst windowing on the receiving side results in reduced signal-to-noise ratio (SNR) gain and axial resolution. To optimize the transmitting signal energy and the SNR gain with reduced sidelobes level in the compressed harmonic signal, the use of nonlinear frequency modulated (NLFM) signals are proposed. The NLFM signal and associated second harmonic matched filter are designed using an analytical approach to minimise correlation errors. In all simulations and experiments, the NLFM signal performance is compared with the reference LFM signal of similar sweeping bandwidth and duration. The results indicate at least a 15 dB reduction in the peak sidelobes level of the NFLM compressed second harmonic signal with comparable axial mainlobe width when compared with the LFM compressed harmonic signal.","PeriodicalId":6437,"journal":{"name":"2010 IEEE International Ultrasonics Symposium","volume":"24 1","pages":"2016-2019"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Ultrasonics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2010.5935665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In ultrasound harmonic imaging with linear frequency modulated (LFM) excitation, the sidelobes level in the compressed harmonic signal can be reduced by applying a windowing function. Windowing on the transmitting signal causes reduced penetration depth, whilst windowing on the receiving side results in reduced signal-to-noise ratio (SNR) gain and axial resolution. To optimize the transmitting signal energy and the SNR gain with reduced sidelobes level in the compressed harmonic signal, the use of nonlinear frequency modulated (NLFM) signals are proposed. The NLFM signal and associated second harmonic matched filter are designed using an analytical approach to minimise correlation errors. In all simulations and experiments, the NLFM signal performance is compared with the reference LFM signal of similar sweeping bandwidth and duration. The results indicate at least a 15 dB reduction in the peak sidelobes level of the NFLM compressed second harmonic signal with comparable axial mainlobe width when compared with the LFM compressed harmonic signal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性调频信号在超声谐波成像中的性能评价
在线性调频(LFM)激励下的超声谐波成像中,可以通过加窗函数降低压缩后谐波信号的副瓣电平。发射信号加窗导致穿透深度降低,而接收侧加窗导致信噪比(SNR)增益和轴向分辨率降低。为了优化发射信号的能量和压缩谐波信号的信噪比增益,提出了采用非线性调频(NLFM)信号的方法。非线性调频信号和相关的二次谐波匹配滤波器采用分析方法设计,以最小化相关误差。在所有的仿真和实验中,将NLFM信号的性能与具有相似扫描带宽和持续时间的参考LFM信号进行了比较。结果表明,与LFM压缩谐波信号相比,具有相当轴向主瓣宽度的NFLM压缩二次谐波信号的峰值副瓣电平至少降低了15 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined use of iteration, quadratic interpolation and an extra kernel for high-resolution 2D particle tracking: A first evaluation Comparing tumor response to VEGF blockade therapy using high frequency ultrasound imaging with size-selected microbubble contrast agents A comparative study of optimal fundamental, second- and superharmonic imaging Evaluation for the distribution of fouling deposition on the microfiltration membrane using high frequency ultrasound A matrix phased array system for 3D high frame-rate imaging of the carotid arteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1