{"title":"Complexity analysis of an interior-point algorithm for linear optimization based on a new parametric kernel function with a double barrier term","authors":"Ayache Benhadid, F. Merahi","doi":"10.3934/naco.2022003","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>Kernel functions play an important role in the complexity analysis of the interior point methods (IPMs) for linear optimization (LO). In this paper, an interior-point algorithm for LO based on a new parametric kernel function is proposed. By means of some simple analysis tools, we prove that the primal-dual interior-point algorithm for solving LO problems meets <inline-formula><tex-math id=\"M1\">\\begin{document}$ O\\left(\\sqrt{n} \\log(n) \\log(\\frac{n}{\\varepsilon}) \\right) $\\end{document}</tex-math></inline-formula>, iteration complexity bound for large-update methods with the special choice of its parameters.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2022003","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Kernel functions play an important role in the complexity analysis of the interior point methods (IPMs) for linear optimization (LO). In this paper, an interior-point algorithm for LO based on a new parametric kernel function is proposed. By means of some simple analysis tools, we prove that the primal-dual interior-point algorithm for solving LO problems meets \begin{document}$ O\left(\sqrt{n} \log(n) \log(\frac{n}{\varepsilon}) \right) $\end{document}, iteration complexity bound for large-update methods with the special choice of its parameters.
Kernel functions play an important role in the complexity analysis of the interior point methods (IPMs) for linear optimization (LO). In this paper, an interior-point algorithm for LO based on a new parametric kernel function is proposed. By means of some simple analysis tools, we prove that the primal-dual interior-point algorithm for solving LO problems meets \begin{document}$ O\left(\sqrt{n} \log(n) \log(\frac{n}{\varepsilon}) \right) $\end{document}, iteration complexity bound for large-update methods with the special choice of its parameters.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.