Electronic and optical properties of graphene adsorbed with methanol molecules: first-principles calculations

Xiuwen Zhao, Mengyao Liu, Xiaotian Zhang, Yufeng Li, Xiaobo Yuan, J. Ren
{"title":"Electronic and optical properties of graphene adsorbed with methanol molecules: first-principles calculations","authors":"Xiuwen Zhao, Mengyao Liu, Xiaotian Zhang, Yufeng Li, Xiaobo Yuan, J. Ren","doi":"10.4208/jams.112217.122917a","DOIUrl":null,"url":null,"abstract":"Abstract. Properties of methanol molecules adsorbed on graphene are studied theoretically and various adsorption geometrical structures, density of states as well as the optical properties are obtained by means of first-principles calculations. Electronic characteristics and optical properties of graphene are sensitive to the molecule adsorptions. It is found that band gap appears when the methanol molecules are adsorbed. The dielectric function, refractive index, extinction coefficient, absorption coefficient and the reflectivity are changed. In the case of one methanol molecule adsorption, the peaks for the imaginary of the dielectric function and the adsorption coefficient shift to the high energy region, and new peaks appear in the visible range. The maximum value of extinction coefficient rises, and new peaks appear in the visible range when two methanol molecules are adsorbed.","PeriodicalId":15131,"journal":{"name":"Journal of Atomic and Molecular Sciences","volume":"1 1","pages":"131-135"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atomic and Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/jams.112217.122917a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Properties of methanol molecules adsorbed on graphene are studied theoretically and various adsorption geometrical structures, density of states as well as the optical properties are obtained by means of first-principles calculations. Electronic characteristics and optical properties of graphene are sensitive to the molecule adsorptions. It is found that band gap appears when the methanol molecules are adsorbed. The dielectric function, refractive index, extinction coefficient, absorption coefficient and the reflectivity are changed. In the case of one methanol molecule adsorption, the peaks for the imaginary of the dielectric function and the adsorption coefficient shift to the high energy region, and new peaks appear in the visible range. The maximum value of extinction coefficient rises, and new peaks appear in the visible range when two methanol molecules are adsorbed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甲醇分子吸附石墨烯的电子和光学性质:第一性原理计算
摘要从理论上研究了吸附在石墨烯上的甲醇分子的性质,并通过第一性原理计算得到了各种吸附几何结构、态密度以及光学性质。石墨烯的电子特性和光学特性对分子吸附非常敏感。发现甲醇分子在吸附过程中会出现带隙。介质的介电函数、折射率、消光系数、吸收系数和反射率都发生了变化。在单甲醇分子吸附的情况下,介电函数虚数峰和吸附系数峰向高能区移动,在可见光范围内出现新的峰。当吸附两个甲醇分子时,消光系数最大值增大,在可见光范围内出现新的峰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Atomic and Molecular Sciences
Journal of Atomic and Molecular Sciences PHYSICS, ATOMIC, MOLECULAR & CHEMICAL-
自引率
0.00%
发文量
1
期刊最新文献
Sulfide doped cobalt oxide nanosphere as a highly efficient electrocatalyst for oxygen evolution reaction Integrated Co-Ni-Se network on Ni foam as an efficient electrocatalyst for Alkaline Hydrogen Evolution B-NiCo2O4/NF as an efficient electrocatalyst for HER Angular distributions of molecular photofragments by intense ultrashort laser pulses Theoretical investigation on the antioxidant activity of p-cresol and its derivatives: Effects of propenyl group and solvents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1