Efficient Computation of Top-K Skyline Objects in Data Set With Uncertain Preferences

IF 0.5 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Data Warehousing and Mining Pub Date : 2021-01-01 DOI:10.4018/IJDWM.2021070104
Nitesh Sukhwani, Venkateswara Rao Kagita, Vikas Kumar, S. K. Panda
{"title":"Efficient Computation of Top-K Skyline Objects in Data Set With Uncertain Preferences","authors":"Nitesh Sukhwani, Venkateswara Rao Kagita, Vikas Kumar, S. K. Panda","doi":"10.4018/IJDWM.2021070104","DOIUrl":null,"url":null,"abstract":"Skyline recommendation with uncertain preferences has drawn AI researchers' attention in recent years due to its wide range of applications. The naive approach of skyline recommendation computes the skyline probability of all objects and ranks them accordingly. However, in many applications, the interest is in determining top-k objects rather than their ranking. The most efficient algorithm to determine an object's skyline probability employs the concepts of zero-contributing set and prefix-based k-level absorption. The authors show that the performance of these methods highly depends on the arrangement of objects in the database. In this paper, the authors propose a method for determining top-k skyline objects without computing the skyline probability of all the objects. They also propose and analyze different methods of ordering the objects in the database. Finally, they empirically show the efficacy of the proposed approaches on several synthetic and real-world data sets.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/IJDWM.2021070104","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1

Abstract

Skyline recommendation with uncertain preferences has drawn AI researchers' attention in recent years due to its wide range of applications. The naive approach of skyline recommendation computes the skyline probability of all objects and ranks them accordingly. However, in many applications, the interest is in determining top-k objects rather than their ranking. The most efficient algorithm to determine an object's skyline probability employs the concepts of zero-contributing set and prefix-based k-level absorption. The authors show that the performance of these methods highly depends on the arrangement of objects in the database. In this paper, the authors propose a method for determining top-k skyline objects without computing the skyline probability of all the objects. They also propose and analyze different methods of ordering the objects in the database. Finally, they empirically show the efficacy of the proposed approaches on several synthetic and real-world data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有不确定偏好的数据集中Top-K Skyline对象的高效计算
具有不确定偏好的Skyline推荐由于其广泛的应用,近年来引起了人工智能研究人员的关注。朴素的天际线推荐方法计算所有对象的天际线概率,并相应地对它们进行排序。然而,在许多应用程序中,我们感兴趣的是确定top-k对象,而不是它们的排名。确定目标天际线概率的最有效算法采用零贡献集和基于前缀的k级吸收的概念。作者表明,这些方法的性能高度依赖于数据库中对象的排列。在本文中,作者提出了一种不计算所有物体的天际线概率而确定top-k天际线物体的方法。他们还提出并分析了对数据库中的对象排序的不同方法。最后,他们通过经验证明了所提出的方法在几个合成和现实世界数据集上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Data Warehousing and Mining
International Journal of Data Warehousing and Mining COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving
期刊最新文献
Fishing Vessel Type Recognition Based on Semantic Feature Vector Optimizing Cadet Squad Organizational Satisfaction by Integrating Leadership Factor Data Mining and Integer Programming Hybrid Inductive Graph Method for Matrix Completion A Fuzzy Portfolio Model With Cardinality Constraints Based on Differential Evolution Algorithms Dynamic Research on Youth Thought, Behavior, and Growth Law Based on Deep Learning Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1