Mining ℰℒ⊥ Bases with Adaptable Role Depth

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Artificial Intelligence Research Pub Date : 2023-04-13 DOI:10.1613/jair.1.13777
Ricardo Guimarães, A. Ozaki, Cosimo Persia, B. Sertkaya
{"title":"Mining ℰℒ⊥ Bases with Adaptable Role Depth","authors":"Ricardo Guimarães, A. Ozaki, Cosimo Persia, B. Sertkaya","doi":"10.1613/jair.1.13777","DOIUrl":null,"url":null,"abstract":"In Formal Concept Analysis, a base for a finite structure is a set of implications that characterizes all valid implications of the structure. This notion can be adapted to the context of Description Logic, where the base consists of a set of concept inclusions instead of implications. In this setting, concept expressions can be arbitrarily large. Thus, it is not clear whether a finite base exists and, if so, how large concept expressions may need to be. We first revisit results in the literature for mining ℰℒ⊥ bases from finite interpretations. Those mainly focus on finding a finite base or on fixing the role depth but potentially losing some of the valid concept inclusions with higher role depth. We then present a new strategy for mining ℰℒ⊥ bases which is adaptable in the sense that it can bound the role depth of concepts depending on the local structure of the interpretation. Our strategy guarantees to capture all ℰℒ⊥ concept inclusions holding in the interpretation, not only the ones up to a fixed role depth. We also consider the case of confident ℰℒ⊥ bases, which requires that some proportion of the domain of the interpretation satisfies the base, instead of the whole domain. This case is useful to cope with noisy data.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":"2 1","pages":"883-924"},"PeriodicalIF":4.5000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.13777","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In Formal Concept Analysis, a base for a finite structure is a set of implications that characterizes all valid implications of the structure. This notion can be adapted to the context of Description Logic, where the base consists of a set of concept inclusions instead of implications. In this setting, concept expressions can be arbitrarily large. Thus, it is not clear whether a finite base exists and, if so, how large concept expressions may need to be. We first revisit results in the literature for mining ℰℒ⊥ bases from finite interpretations. Those mainly focus on finding a finite base or on fixing the role depth but potentially losing some of the valid concept inclusions with higher role depth. We then present a new strategy for mining ℰℒ⊥ bases which is adaptable in the sense that it can bound the role depth of concepts depending on the local structure of the interpretation. Our strategy guarantees to capture all ℰℒ⊥ concept inclusions holding in the interpretation, not only the ones up to a fixed role depth. We also consider the case of confident ℰℒ⊥ bases, which requires that some proportion of the domain of the interpretation satisfies the base, instead of the whole domain. This case is useful to cope with noisy data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有自适应作用深度的⊥基的挖掘
在形式概念分析中,有限结构的基础是表征该结构的所有有效含义的一组含义。这个概念可以适应描述逻辑的上下文,其中基础由一组概念包含而不是暗示组成。在此设置中,概念表达式可以任意大。因此,目前尚不清楚是否存在有限基,如果存在,概念表达式可能需要多大。我们首先回顾文献中从有限解释中挖掘出的⊥基的结果。这些主要侧重于寻找一个有限的基础或固定角色深度,但可能会失去一些具有较高角色深度的有效概念包含。然后,我们提出了一种挖掘⊥基的新策略,它是适应性的,因为它可以根据解释的局部结构约束概念的作用深度。我们的策略保证捕获解释中所有的⊥概念包含,而不仅仅是达到固定角色深度的那些。我们还考虑了自信的∑⊥基的情况,它要求解释域的某些比例满足基,而不是整个域。这种情况对处理有噪声的数据很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Artificial Intelligence Research
Journal of Artificial Intelligence Research 工程技术-计算机:人工智能
CiteScore
9.60
自引率
4.00%
发文量
98
审稿时长
4 months
期刊介绍: JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.
期刊最新文献
Collective Belief Revision Competitive Equilibria with a Constant Number of Chores Improving Resource Allocations by Sharing in Pairs A General Model for Aggregating Annotations Across Simple, Complex, and Multi-Object Annotation Tasks Asymptotics of K-Fold Cross Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1