Transform-Data-by-Example (TDE): Extensible Data Transformation in Excel

Yeye He, Kris Ganjam, Kukjin Lee, Yue Wang, Vivek R. Narasayya, S. Chaudhuri, Xu Chu, Yudian Zheng
{"title":"Transform-Data-by-Example (TDE): Extensible Data Transformation in Excel","authors":"Yeye He, Kris Ganjam, Kukjin Lee, Yue Wang, Vivek R. Narasayya, S. Chaudhuri, Xu Chu, Yudian Zheng","doi":"10.1145/3183713.3193539","DOIUrl":null,"url":null,"abstract":"Business analysts and data scientists today increasingly need to clean, standardize and transform diverse data sets, such as name, address, date time, phone number, etc., before they can perform analysis. These ad-hoc transformation problems are typically solved by one-off scripts, which is both difficult and time-consuming. Our observation is that these domain-specific transformation problems have long been solved by developers with code libraries, which are often shared in places like GitHub. We thus develop an extensible data transformation system called Transform-Data-by-Example (TDE) that can leverage rich transformation logic in source code, DLLs, web services and mapping tables, so that end-users only need to provide a few (typically 3) input/output examples, and TDE can synthesize desired programs using relevant transformation logic from these sources. The beta version of TDE was released in Office Store for Excel.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3193539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Business analysts and data scientists today increasingly need to clean, standardize and transform diverse data sets, such as name, address, date time, phone number, etc., before they can perform analysis. These ad-hoc transformation problems are typically solved by one-off scripts, which is both difficult and time-consuming. Our observation is that these domain-specific transformation problems have long been solved by developers with code libraries, which are often shared in places like GitHub. We thus develop an extensible data transformation system called Transform-Data-by-Example (TDE) that can leverage rich transformation logic in source code, DLLs, web services and mapping tables, so that end-users only need to provide a few (typically 3) input/output examples, and TDE can synthesize desired programs using relevant transformation logic from these sources. The beta version of TDE was released in Office Store for Excel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据按例转换(TDE): Excel中的可扩展数据转换
如今,业务分析师和数据科学家越来越需要清理、标准化和转换各种数据集,如姓名、地址、日期、时间、电话号码等,然后才能进行分析。这些特殊的转换问题通常由一次性脚本解决,这既困难又耗时。我们的观察是,这些特定领域的转换问题早就被开发人员用代码库解决了,这些代码库通常在GitHub等地方共享。因此,我们开发了一个可扩展的数据转换系统,称为按例转换数据(TDE),它可以利用源代码、dll、web服务和映射表中的丰富转换逻辑,这样最终用户只需要提供几个(通常是3个)输入/输出示例,TDE可以使用来自这些源的相关转换逻辑合成所需的程序。TDE的测试版在Office Store中发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meta-Dataflows: Efficient Exploratory Dataflow Jobs Columnstore and B+ tree - Are Hybrid Physical Designs Important? Demonstration of VerdictDB, the Platform-Independent AQP System Efficient Selection of Geospatial Data on Maps for Interactive and Visualized Exploration Session details: Keynote1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1