Laura Patricia Cruz-Cruz, A. Negrón-Mendoza, A. Heredia-Barbero
{"title":"Stability of Glycine in Saline Solutions Exposed to Ionizing Radiation","authors":"Laura Patricia Cruz-Cruz, A. Negrón-Mendoza, A. Heredia-Barbero","doi":"10.15415/jnp.2020.72009","DOIUrl":null,"url":null,"abstract":"The stability of biologically important molecules, such as amino acids, being subjected to highradiation fields is relevant for chemical evolution studies. Bodies of water were very important in the primitive Earth. In these bodies, the presence of dissolved salts, together with organic molecules, could influence the behavior of the systems in prebiotic environments.The objective of this work is to examine the influence of sodium chloride on the stability of the amino acid glycine when subjected to high radiation doses. The analysis of the irradiated samples was followed by HPLC coupled with a UV-VIS detector. The results show that glycine in aqueous solutions (without oxygen) decomposed around 90% at a dose of 91 kGy. In the presence of salts, up to 80% of the amino acid was recovered at the same dose. Laboratory simulations demonstrate a protective role for sodium chloride (specifically the chloride ion) to glycine against an external source of ionizing radiation.","PeriodicalId":16534,"journal":{"name":"Journal of Nuclear Physics, Material Sciences, Radiation and Applications","volume":"11 1","pages":"83-87"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Physics, Material Sciences, Radiation and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15415/jnp.2020.72009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The stability of biologically important molecules, such as amino acids, being subjected to highradiation fields is relevant for chemical evolution studies. Bodies of water were very important in the primitive Earth. In these bodies, the presence of dissolved salts, together with organic molecules, could influence the behavior of the systems in prebiotic environments.The objective of this work is to examine the influence of sodium chloride on the stability of the amino acid glycine when subjected to high radiation doses. The analysis of the irradiated samples was followed by HPLC coupled with a UV-VIS detector. The results show that glycine in aqueous solutions (without oxygen) decomposed around 90% at a dose of 91 kGy. In the presence of salts, up to 80% of the amino acid was recovered at the same dose. Laboratory simulations demonstrate a protective role for sodium chloride (specifically the chloride ion) to glycine against an external source of ionizing radiation.