Detection of slow malicious worms using multi-sensor data fusion

Frank Akujobi, I. Lambadaris, E. Kranakis
{"title":"Detection of slow malicious worms using multi-sensor data fusion","authors":"Frank Akujobi, I. Lambadaris, E. Kranakis","doi":"10.1109/CISDA.2009.5356557","DOIUrl":null,"url":null,"abstract":"Detection of slow worms is particularly challenging due to the stealthy nature of their propagation techniques and their ability to blend with normal traffic patterns. In this paper, we propose a distributed detection approach based on the Generalized Evidence Processing (GEP) theory, a sensor integration and data fusion technique. With GEP theory, evidence collected by distributed detectors determine the probability associated with a detection decision under a hypothesis. The collected evidence is combined to arrive at an optimal fused detection decision by minimizing a cummulative decision risk function. Typically, malicious traffic flows of varying scanning rates can occur in the wild, and the difficulty in detecting slow scanning worms in particular can be exacerbated by interference from other traffic flows scanning at faster rates. Our proposed detection technique uses a window-based self adapting profiler to filter detected malicious traffic profiles with scanning rates greater than the low scanning rates we are interested in. Experiments on a live test-bed are used to demonstrate behavior of the technique.","PeriodicalId":6407,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","volume":"30 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISDA.2009.5356557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Detection of slow worms is particularly challenging due to the stealthy nature of their propagation techniques and their ability to blend with normal traffic patterns. In this paper, we propose a distributed detection approach based on the Generalized Evidence Processing (GEP) theory, a sensor integration and data fusion technique. With GEP theory, evidence collected by distributed detectors determine the probability associated with a detection decision under a hypothesis. The collected evidence is combined to arrive at an optimal fused detection decision by minimizing a cummulative decision risk function. Typically, malicious traffic flows of varying scanning rates can occur in the wild, and the difficulty in detecting slow scanning worms in particular can be exacerbated by interference from other traffic flows scanning at faster rates. Our proposed detection technique uses a window-based self adapting profiler to filter detected malicious traffic profiles with scanning rates greater than the low scanning rates we are interested in. Experiments on a live test-bed are used to demonstrate behavior of the technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多传感器数据融合的慢速恶意蠕虫检测
由于其传播技术的隐身性和与正常流量模式混合的能力,检测慢蠕虫特别具有挑战性。本文提出了一种基于广义证据处理(GEP)理论的分布式检测方法,该方法是一种传感器集成和数据融合技术。在GEP理论中,由分布式检测器收集的证据决定了在假设下与检测决策相关的概率。将收集到的证据结合起来,通过最小化累积决策风险函数来获得最优的融合检测决策。通常,具有不同扫描速率的恶意通信流可能会在野外发生,并且由于来自其他以更快速度扫描的通信流的干扰,检测慢扫描蠕虫的困难可能会加剧。我们提出的检测技术使用基于窗口的自适应分析器来过滤扫描速率大于我们感兴趣的低扫描速率的检测到的恶意流量配置文件。在现场试验台上进行了实验,以验证该技术的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolving spiking neural networks: A novel growth algorithm corrects the teacher Emitter geolocation using low-accuracy direction-finding sensors Secure two and multi-party association rule mining Passive multitarget tracking using transmitters of opportunity Bias phenomenon and analysis of a nonlinear transformation in a mobile passive sensor network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1