Memory-Efficient Structured Convex Optimization via Extreme Point Sampling

IF 2.6 Q1 MATHEMATICS, APPLIED SIAM journal on mathematics of data science Pub Date : 2020-06-19 DOI:10.1137/20m1358037
Nimita Shinde, Vishnu Narayanan, J. Saunderson
{"title":"Memory-Efficient Structured Convex Optimization via Extreme Point Sampling","authors":"Nimita Shinde, Vishnu Narayanan, J. Saunderson","doi":"10.1137/20m1358037","DOIUrl":null,"url":null,"abstract":"Memory is a key computational bottleneck when solving large-scale convex optimization problems such as semidefinite programs (SDPs). In this paper, we focus on the regime in which storing an $n\\times n$ matrix decision variable is prohibitive. To solve SDPs in this regime, we develop a randomized algorithm that returns a random vector whose covariance matrix is near-feasible and near-optimal for the SDP. We show how to develop such an algorithm by modifying the Frank-Wolfe algorithm to systematically replace the matrix iterates with random vectors. As an application of this approach, we show how to implement the Goemans-Williamson approximation algorithm for \\textsc{MaxCut} using $\\mathcal{O}(n)$ memory in addition to the memory required to store the problem instance. We then extend our approach to deal with a broader range of structured convex optimization problems, replacing decision variables with random extreme points of the feasible region.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"51 1","pages":"787-814"},"PeriodicalIF":2.6000,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20m1358037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

Abstract

Memory is a key computational bottleneck when solving large-scale convex optimization problems such as semidefinite programs (SDPs). In this paper, we focus on the regime in which storing an $n\times n$ matrix decision variable is prohibitive. To solve SDPs in this regime, we develop a randomized algorithm that returns a random vector whose covariance matrix is near-feasible and near-optimal for the SDP. We show how to develop such an algorithm by modifying the Frank-Wolfe algorithm to systematically replace the matrix iterates with random vectors. As an application of this approach, we show how to implement the Goemans-Williamson approximation algorithm for \textsc{MaxCut} using $\mathcal{O}(n)$ memory in addition to the memory required to store the problem instance. We then extend our approach to deal with a broader range of structured convex optimization problems, replacing decision variables with random extreme points of the feasible region.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于极值点抽样的高效内存结构凸优化
在求解半定规划等大规模凸优化问题时,内存是一个关键的计算瓶颈。在本文中,我们关注存储$n\times n$矩阵决策变量是禁止的情况。为了解决这种情况下的SDP,我们开发了一种随机算法,该算法返回一个随机向量,其协方差矩阵对于SDP近似可行且近似最优。我们展示了如何通过修改Frank-Wolfe算法来系统地用随机向量替换矩阵迭代来开发这样的算法。作为这种方法的一个应用,我们将展示如何使用$\mathcal{O}(n)$内存以及存储问题实例所需的内存来实现\textsc{MaxCut}的Goemans-Williamson近似算法。然后,我们扩展了我们的方法来处理更广泛的结构化凸优化问题,用可行域的随机极值点代替决策变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Supervised Gromov-Wasserstein Optimal Transport with Metric-Preserving Constraints. Entropic Optimal Transport on Random Graphs A Universal Trade-off Between the Model Size, Test Loss, and Training Loss of Linear Predictors Approximating Probability Distributions by Using Wasserstein Generative Adversarial Networks Adversarial Robustness of Sparse Local Lipschitz Predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1