Pengfei Lin, Woo Young Choi, Seung-Hi Lee, C. Chung
{"title":"Model Predictive Path Planning Based on Artificial Potential Field and Its Application to Autonomous Lane Change","authors":"Pengfei Lin, Woo Young Choi, Seung-Hi Lee, C. Chung","doi":"10.23919/ICCAS50221.2020.9268380","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a vehicle lane change system using model predictive path planning (MPPP) based on the artificial potential field (APF) for speeding vehicles. It is shown that APF has high performance in real-time obstacle avoidance. However, it remains unpractical for self-driving cars because the point model used for the APF ignores the lateral vehicle dynamics for the lane-keeping system. To resolve the problem, this paper introduces a novel curve-fitting method combined with the APF applied to plan a drivable path for autonomous vehicles in the lane change action. The proposed system was validated through MATLAB/Simulink with the empirical kinematic model. The simulation results indicate that the model predictive path planning algorithm is highly effective in high-speed lane change scenarios to avoid dynamic obstacle vehicles.","PeriodicalId":6732,"journal":{"name":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","volume":"71 1","pages":"731-736"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS50221.2020.9268380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper, we propose a vehicle lane change system using model predictive path planning (MPPP) based on the artificial potential field (APF) for speeding vehicles. It is shown that APF has high performance in real-time obstacle avoidance. However, it remains unpractical for self-driving cars because the point model used for the APF ignores the lateral vehicle dynamics for the lane-keeping system. To resolve the problem, this paper introduces a novel curve-fitting method combined with the APF applied to plan a drivable path for autonomous vehicles in the lane change action. The proposed system was validated through MATLAB/Simulink with the empirical kinematic model. The simulation results indicate that the model predictive path planning algorithm is highly effective in high-speed lane change scenarios to avoid dynamic obstacle vehicles.