Efficient incremental breadth-depth XML event mining

Rashed K. Salem, J. Darmont, Omar Boussaïd
{"title":"Efficient incremental breadth-depth XML event mining","authors":"Rashed K. Salem, J. Darmont, Omar Boussaïd","doi":"10.1145/2076623.2076649","DOIUrl":null,"url":null,"abstract":"Many applications log a large amount of events continuously. Extracting interesting knowledge from logged events is an emerging active research area in data mining. In this context, we propose an approach for mining frequent events and association rules from logged events in XML format. This approach is composed of two-main phases: I) constructing a novel tree structure called Frequency XML-based Tree (FXT), which contains the frequency of events to be mined; II) querying the constructed FXT using XQuery to discover frequent itemsets and association rules. The FXT is constructed with a single-pass over logged data. We implement the proposed algorithm and study various performance issues. The performance study shows that the algorithm is efficient, for both constructing the FXT and discovering association rules.","PeriodicalId":93615,"journal":{"name":"Proceedings. International Database Engineering and Applications Symposium","volume":"10 1","pages":"197-203"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Database Engineering and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2076623.2076649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Many applications log a large amount of events continuously. Extracting interesting knowledge from logged events is an emerging active research area in data mining. In this context, we propose an approach for mining frequent events and association rules from logged events in XML format. This approach is composed of two-main phases: I) constructing a novel tree structure called Frequency XML-based Tree (FXT), which contains the frequency of events to be mined; II) querying the constructed FXT using XQuery to discover frequent itemsets and association rules. The FXT is constructed with a single-pass over logged data. We implement the proposed algorithm and study various performance issues. The performance study shows that the algorithm is efficient, for both constructing the FXT and discovering association rules.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效的增量宽度深度XML事件挖掘
许多应用程序连续记录大量事件。从日志事件中提取有趣的知识是数据挖掘中一个新兴的活跃研究领域。在这种情况下,我们提出了一种从XML格式的日志事件中挖掘频繁事件和关联规则的方法。该方法由两个主要阶段组成:1)构建一种新的树结构,称为基于xml的频率树(Frequency XML-based tree, FXT),其中包含要挖掘的事件频率;II)使用XQuery查询构造的FXT以发现频繁项集和关联规则。FXT是用单遍记录数据构造的。我们实现了所提出的算法并研究了各种性能问题。性能研究表明,该算法在构造FXT和发现关联规则方面都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A method combining improved Mahalanobis distance and adversarial autoencoder to detect abnormal network traffic Proceedings of the International Database Engineered Applications Symposium Conference, IDEAS 2023, Heraklion, Crete, Greece, May 5-7, 2023 IDEAS'22: International Database Engineered Applications Symposium, Budapest, Hungary, August 22 - 24, 2022 IDEAS 2021: 25th International Database Engineering & Applications Symposium, Montreal, QC, Canada, July 14-16, 2021 IDEAS 2020: 24th International Database Engineering & Applications Symposium, Seoul, Republic of Korea, August 12-14, 2020
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1