M. Basit, Sofia Javed, Saqib Ali, A. A. Qureshi, I. Gul, M. Akram
{"title":"Recent Innovations in Low Dimensional ZnO Nanostructures/Nanocomposites for Photocatalytic Degradation","authors":"M. Basit, Sofia Javed, Saqib Ali, A. A. Qureshi, I. Gul, M. Akram","doi":"10.54738/mi.2022.2901","DOIUrl":null,"url":null,"abstract":"The energy and environmental application of materials can be improved dramatically by efficiently consuming a large section of the solar spectrum. Scientists are exploring the wide band gap metal oxides and their nanocomposites as heterogeneous photocatalysts for effective performance in solar wavelengths. Increased surface area, efficient photon absorption, and reduced recombination rate can be achieved by structural engineering and developing efficient nanocomposites. A thorough review of recent innovations in ZnO nanostructures/nanocomposites exclusively for photocatalytic dye degradation has been conducted. The review provides insight into the effects of ZnO nanostructure and recent advancements in ZnO nanocomposites to improve the photocatalytic activity of organic pollutants under different radiations. The review concludes that structural and material engineering can boost the photocatalytic performance of ZnO structures.","PeriodicalId":18235,"journal":{"name":"Materials Research Innovations","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Innovations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54738/mi.2022.2901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The energy and environmental application of materials can be improved dramatically by efficiently consuming a large section of the solar spectrum. Scientists are exploring the wide band gap metal oxides and their nanocomposites as heterogeneous photocatalysts for effective performance in solar wavelengths. Increased surface area, efficient photon absorption, and reduced recombination rate can be achieved by structural engineering and developing efficient nanocomposites. A thorough review of recent innovations in ZnO nanostructures/nanocomposites exclusively for photocatalytic dye degradation has been conducted. The review provides insight into the effects of ZnO nanostructure and recent advancements in ZnO nanocomposites to improve the photocatalytic activity of organic pollutants under different radiations. The review concludes that structural and material engineering can boost the photocatalytic performance of ZnO structures.
期刊介绍:
Materials Research Innovations covers all areas of materials research with a particular interest in synthesis, processing, and properties from the nanoscale to the microscale to the bulk. Coverage includes all classes of material – ceramics, metals, and polymers; semiconductors and other functional materials; organic and inorganic materials – alone or in combination as composites. Innovation in composition and processing to impart special properties to bulk materials and coatings, and for innovative applications in technology, represents a strong focus. The journal attempts to balance enduring themes of science and engineering with the innovation provided by such areas of research activity.